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Abstract

Abstract

The results of numerical and experimental studies of heating and evaporation
of monodisperse fuel droplets in an ambient air of fixed temperature and atmospheric
pressure are reported. The numerical model is based on the Effective Thermal
Conductivity (ETC) model and the analytical solution to the heat conduction
equation inside droplets. It is pointed out that the interactions between droplets lead
to noticeable reduction of their heating in the case of ethanol, 3-pentanone, n-
heptane, n-decane and n-dodecane droplets, and reduction of their cooling in the case
of acetone. A simplified model for bi-component droplet heating and evaporation is
developed. The predicted time evolution of the average temperatures is shown to be
reasonably close to the measured one (ethanol/acetone mixture). The above-
mentioned simplified model is generalised to take into account the coupling between
droplets and the ambient gas. The model is applied to the analysis of the
experimentally observed heating and evaporation of monodispersed n-decane/3-
pentanone mixture droplets at atmospheric pressure. It is pointed out that the number
of terms in the series in the expressions for droplet temperature and species mass
fractions can be reduced to just three, with possible errors less than about 0.5%. In
this case, the model can be recommended for implementation into CFD codes. The
simplified model for bi-component droplet heating and evaporation, based on the
analytical solutions to the heat transfer and species diffusion equations, is
generalised to take into account the effect of the moving boundary and its predictions
are compared with those of the model based on the numerical solutions to the heat
transfer and species diffusion equations for both moving and stationary boundary
conditions. A new model for heating and evaporation of complex multi-component
hydrocarbons fuel droplets is developed and applied to Diesel and gasoline fuels. In
contrast to all previous models for multi-component fuel droplets with large number
of components, the new model takes into account the effects of thermal diffusion and

diffusion of components within the droplets.
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Chapter 1: General introduction

1 General introduction

1.1 Background

The practical importance of accurate and computer efficient modelling of fuel
droplet heating and evaporation in engineering applications is universally recognised
(Sirignano, 1999; Polyanin et al, 2002; Michaelides, 2006; Faghri and Zhang, 2006).
The fuels used in automotive engines are supplied to combustion chambers in the
forms of sprays. Droplets in these sprays are heated and evaporated and this
eventually leads to the ignition of the air/fuel vapour mixture (Sazhina et al, 2000).
This thesis focuses on the modelling of the first two stages of this process only.

Sirignano (1999) classified the droplet heating models in order of increasing
complexity into the following six categories:

1. Constant droplet temperature model where the droplet temperature is constant
throughout the evaporation process (d°-law).

2. Infinite Thermal Conductivity (ITC) model, where the droplet temperature is
uniform but time-varying (no temperature gradient inside the droplet).

3. Conduction limit model which considers the transient heating process inside the
droplet.

4. Effective Thermal Conductivity (ETC) model which takes the effect of
recirculation inside the droplet into account via adjustment of the internal liquid
thermal conductivity.

5. Vortex model which describes the droplet heating by considering the internal flow
within the droplet (Hill vortex).

6. Model based on the full solution of the Navier—Stokes equations.

The more complex the model, the more accurate the results, but it should be
kept in mind that these models have been developed for spray simulation where
hundreds of thousands of droplets are considered and the computational cost takes
the first priority, Ashgriz (2011).

In most Computational Fluid Dynamics (CFD) codes, the heating process has
been modelled assuming that there is no temperature gradient inside droplets
(Sazhina et al, 2000). This assumption contradicts direct measurements of the
temperature distribution inside droplets (Castanet et al, 2002; 2003; 2005; 2007).
Bertoli and Migliaccio (1999) were perhaps the first to draw attention to the fact that

1
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taking into account the temperature gradient inside droplets can considerably
increase the accuracy of the CFD modelling of combustion processes in Diesel
engines. The analysis by these authors was based on the numerical solution to the
heat conduction equation inside droplets. An alternative approach was suggested and
developed in (Sazhin et al, 2004; 2005a,b; 2006; 2007; Sazhin, 2006). In these
papers both finite liquid thermal conductivity and recirculation inside droplets (via
the Effective Thermal Conductivity (ETC) model; Abramzon and Sirignano, 1989)
were taken into account by incorporating the analytical solution to the heat
conduction equation inside the droplet into the numerical scheme. This approach was
shown to be considerably more efficient (from the points of view of both accuracy
and computer efficiency) than the one used in Bertoli and Migliaccio (1999).

Among other authors who studied heating and evaporation of mono-
component droplets theoretically and experimentally we mention Nomura et al
(1996), Sazhin and Krutitskii (2003), Abdelghaffar (2005), Maqua (2007), Maqua et
al (2006; 2008a), Elwardany (2009), Deprédurand (2009) and Deprédurand et al
(2008; 2010).

All papers, mentioned above, were based on the assumption that fuel
droplets are mono-component, while most of the commercial fuels (used in
automotive engines) such as gasoline and Diesel fuels are complex mixture of
hundreds of hydrocarbons species (Heywood, 1988). Hence, the assumption of
mono-component droplets might be not accurate enough for modelling realistic fuel
heating and evaporation processes (Zhang and Kong, 2009).

There are two main groups of multi-component droplet heating and
evaporation models: the first group is called the Discrete Component (DC) models in
which the number of fuel components is reasonably small (Abraham and Magi,
1998; Aggarwal and Mongia, 2002; Maqua et al, 2008b). The second group deals
with fuels with large number of components (Continuous Thermodynamics ‘CT’
theory; Tamim and Hallet, 1995; Lippert and Reitz, 1997; Zhang and Kong, 2009
and the Distillation Curve model; Burger et al, 2003). There are also models which
contain features of both groups (Lage, 2007; Ra and Reitz, 2009; Laurent et al, 2009;
Zhang and Kong, 2010; Rivard and Briiggemann, 2010).
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1.2 Objectives

The objectives of this thesis are the following:

1. To perform a comparison between the predictions of the heating and
evaporation model, suggested by Sazhin et al (2004), and experimental
data similar to those reported by Deprédurand et al (2010) for mono-
component droplets, but for a wider range of substances (acetone,
ethanol, 3-pentanone, n-heptane, n-decane and n-dodecane) and
different experimental conditions. The effect of interaction between
droplets on the predicted droplet temperatures and radii will be taken

into account.

2. To develop a simplified model for multi-component droplets (small
number of components) based on a new analytical solution to the
species diffusion equation inside the droplet and validation of this
model using the available experimental data (acetone/ethanol mixtures;

Maqua et al, 2008b).

3. To perform a comparison between the predictions of the new simplified
model for multi-component droplets heating and evaporation, described
above, and those based on the numerical solutions to both temperature

and species equations.

4. To generalise the above-mentioned model to take into account the
effect of varying droplet radius during each individual timestep (effect

of the moving boundary).

5. To generalise the above-mentioned simplified model to take into
account the effect of coupling between droplets and ambient gas. To
validate the new model using the available experimental data (n-
decane/3-pentanone mixtures; Deprédurand, 2009). To investigate the

accuracy and CPU efficiency of the new model.
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6. To develop a new quasi-discrete model for multi-component fuel
droplets with large number of components and to apply this model to

Diesel and gasoline fuels.

1.3 Layout of the thesis

Chapter 2 summarises the previously suggested approaches related to heating
and evaporation of fuel droplets. Chapter 3 focuses on the modelling of
monodisperse mono-component fuel droplets heating and evaporation. A simplified
model for a multi-component droplets heating and evaporation is presented and
discussed in Chapter 4. The generalisation of this simplified model to take into
account the coupling between droplets and ambient gas and the results of our
analysis of its accuracy and CPU efficiency are presented in Chapter 5. A new model
for multi-component fuel droplets with large number of components and its
application to Diesel and gasoline fuels are presented in Chapter 6. The main results

of the thesis and recommendations for future work are summarised in Chapter 7.

1.4 Dissemination of the results

The results presented in the thesis have been published in the following
journals papers: Kristyadi et al (2010) (Chapter 3), Sazhin et al (2010b) (Chapter 4),
Sazhin et al (2011a) , Gusev et al (2012) and Elwardany et al (2012) (Chapter 5),
Sazhin et al (2011c) and Elwardany and Sazhin (2012) (Chapter 6) and a number of
papers in refereed conferences proceedings (Sazhin et al, 2010c,d; 2011b; Elwardany

et al, 2011).
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2 Literature review

This chapter briefly highlights numerous previous studies related to heating and
evaporation of fuel droplets. Section 2.1 focuses on the models of mono-component
droplets heating and evaporation. Section 2.2 focuses on the models of multi-
component droplets heating and evaporation. Experimental studies related to the
heating and evaporation process of fuel droplets are summarised in Section 2.3. A

summary of this chapter is presented in Section 2.4.

2.1 Mono-component droplet heating and evaporation

Chin and Lefebvre (1983a) studied the effect of ambient pressure and
temperature on the evaporation rate of different types of fuels (aviation gasoline, n-
heptane, JP4, JP5 and DF2) in air. They provided the following equation to calculate

the steady-state evaporation constant Ky, (see Eq. (2.7)) of the d*-law:

Kst — 8kg 1n(1+BM)’ (21)

Plcpg
where Cp,, is the gas specific heat capacity, k; is the gas thermal conductivity, p; is
the liquid fuel density and B, is the Spalding mass transfer number:

Yus—1 Y,
B vs Voo vs , (2.2)
M Y, Y,
1-Yps 1-Yps Yien =0

where Y,,; and Y, are the fuel vapour mass fraction at the droplet surface and in the
surroundings respectively. They assumed that Y, = 0, while Y,,; was calculated

from the following equation:

Fos = |14 (2 - 1)%]_1, (23)

where p is the ambient pressure, M, is the molecular weight of air, My is the
molecular weight of fuel and p,, is the fuel vapour pressure (saturation pressure) at
the droplet surface calculated from the Clausius-Clapeyron equation:
py = expla —b/(Ts — 43)], 2.4)
where T, is the droplet surface temperature and a, b are constants specified for
various types of fuel.
They suggested a numerical procedure for calculation of steady-state
evaporation droplet surface temperature T, and steady-state evaporation constant

K. This procedure is based on the fact that at steady-state evaporation the heat
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available for heating the droplet is equal to the heat used in evaporation of the
droplet which means that T, i, = const and By, = By, where By is the Spalding heat

transfer number calculated as:

[ Too—T-
p g (Teo=Ts)

By =0 —, @.5)

where L is the latent heat of evaporation and T,, is the ambient temperature.

After equating By, and Br, they obtained the following equation:

L — ) (2.6)

They began their calculations by choosing a random value of T and then
calculated all the relevant parameters in Eq. (2.6). Then they substituted these
parameters in the left-hand side of Eq. (2.6) and repeated this step for another surface
temperature until the left-hand side of Eq. (2.6) became close to 0. The droplet
surface temperature that satisfied Eq. (2.6) is the steady-state droplet surface
temperature. They used this temperature to calculate the steady-state evaporation
constant K, using Eq. (2.1) and calculated the droplet diameter using the d’-law:

D? = D& — Kt, 2.7
where D is the droplet diameter at the current timestep, D, is the initial droplet
diameter and t is the time.

It was noticed that the steady-state evaporation constant K, increased with
the ambient temperature. Also it was pointed out that the evaporation rates increased
with the ambient pressure for high ambient temperatures (> 800 K) and decreased
with the ambient pressure for low temperatures (< 600 K). For the intermediate
region between 600 and 800 K, evaporation rates were almost independent of the
ambient pressure. The pressure dependence of K, was approximated as:

Ky o« p™, (2.8)
where n varies between —0.25 and +0.25. It was shown that the pressure
dependence of the evaporation rates was stronger at high pressures than at low
pressures. The pressure dependence was shown to be positive for high ambient
temperatures and negative for low ambient temperatures.

Chin and Lefebvre (1983b) extended their previous paper and studied the
factors affecting the duration of the heat-up period in the fuel droplet evaporation
process and the ratio of the heat-up period to the total evaporation time. The factors

under consideration were different ambient conditions (air pressure, temperature and
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velocity) and fuel droplet size. The heat available for heating up the droplet (Qp,)
was calculated as the difference between the heat transferred from the surroundings

to the droplet and the heat used for the evaporation of the fuel:

0 L (2T —
Qnu=rial (5~ 1), 29)
where m, is the fuel evaporation rate calculated using the following equation:
rig = 21D ~LIn(1 + By) = < 2003, (2.10)

Pg
The rate of change of droplet diameter was calculated as:

dD _ 4kg In(1+Bpy)
dt p
Plcpg

(2.11)

It was assumed that the droplet has uniform but time-varying temperature
(ITC model) and the rate of change of droplet surface temperature was calculated

from the following equation:

s = Chu (2.12)

dt cmyg’
where c; is the specific heat of the fuel droplet, m; is the fuel droplet mass.

The authors defined the end of the heat-up period as the moment of time
when there is no heat available for heating up the droplet (By, = Br, see Eq. (2.9)).
This condition was used to capture the heat-up temperature and radius of the droplet.
Although this iterative method was reasonably accurate, it was found to be time-
consuming. An alternative method for calculating the heat-up period and steady-state
temperature was suggested. The results, predicted by both iterative and alternative
method, appeared to be reasonably close.

It was shown that the heat-up period increased with increasing ambient
pressure and decreased with increasing ambient temperature. It was also noticed that
the increase in initial fuel droplet temperature from 270 K to 370 K reduced the heat-
up period by about 20% for a number of ambient temperatures. The results showed
that convective effects did not change the steady-state temperature and heat-up
period whilst it is possible to enhance the evaporation process by reducing the
steady-state evaporation time.

The ratio of the heat-up period to the total evaporation time increased with
increasing fuel droplet size and also increased with increasing ambient velocity and
pressure. It was demonstrated that, at low pressure this ratio decreased with

increasing temperature, whereas at high pressure the opposite trend was observed. It
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was also noticed that increasing ambient temperature reduced both heat-up and
steady-state periods.

Abramzon and Sirignano (1989) developed a model for mono-component
droplets heating and evaporation. This model considered the effects of variable
thermophysical properties, the non-unity Lewis number in the gas film, internal
recirculation inside the droplet and the transient heating of liquid fuel droplets. They
called this model the ‘extended model’. It is based on the solution of a two
dimensional (axially symmetric) energy equation inside the droplet. The limiting
cases of this model are: for small liquid Peclet numbers Pe,, the extended model is
reduced to the ‘Conduction limit model’ while for high liquid Peclet numbers the
extended model represents the ‘Vortex model’.

It was noticed that the extended model has poor CPU efficiency and is not
adequate for implementation into CFD codes. A simplified model was suggested to
take into account the effect of recirculation inside droplets via the ETC model, in
which the thermal conductivity of liquid is multiplied by the factor y; which allows
for the effect of internal circulation on heat transfer within the droplet:

kete = xrki, (2.13)
where the coefficient y7 varies from 1 (at droplet Peclet number Pe,;) = Rey;)Prag) <
10) to 2.72 (at Peyq) > 500) and it was approximated as:

xr = 1.86 + 0.86tanh[2.225log;o(Pe 4y /30)], (2.14)

PiusRq

where Regqy = 2 is the Reynolds number and Pryqy = % is the Prandtl
l

number, based on liquid transport coefficients, p;, y;, ¢; and k; are liquid density,
dynamic viscosity, specific heat capacity and thermal conductivity respectively and

U is the maximum surface velocity calculated as:
_1 kg
Uy = = Jug — ] (ﬂ—l) ReCp, (2.15)
where u, is the gas velocity, u, is the droplet velocity, p, is the gas dynamic

viscosity, Re,; is the Reynolds number based on gas transport coefficients Re; =

2pg4 |ug — Uy |Rd / Ug and Cp is the friction drag coefficient:

12.69

= 2/3 )
Re2/3(14+By)

Cr (2.16)

where By, is the Spalding mass transfer number defined by Eq. (2.2).
The predictions of the ETC and extended models almost coincided while the

extended model results appeared to be in between the results of the ITC and

8
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Conduction limit models. The ETC model does not detail the physical features of the
recirculation inside the droplet which are not important in most practical engineering
applications but it predicts the global effect of the recirculation on heat transfer
within the droplets.

Bertoli and Migliaccio (1999) suggested a numerical solution to the heat
conduction equation inside the droplet to take into account the effect of finite
thermal conductivity, the ‘Conduction limit model’. This model was implemented
into KIVA II CFD code to relax the assumption of infinite thermal conductivity of
liquid which is originally introduced in the KIVA II ‘ITC model’, and validated
using variant fuels (tetradecane, n-heptane and Diesel fuel). For more volatile fuels,
the differences between the predictions of the models were less important than for
less volatile fuels. The validation was performed against experimental data for an
evaporating droplet in a combustion bomb and evaporating spray in a Direct
Injection (DI) Diesel engine. The results referring to droplet radii, liquid tip
penetration and in-cylinder pressures showed that the predictions of the Conduction
limit model agreed better with the experimental data than those of the ITC model.

Sazhin and Krutitskii (2003) suggested an analytical solution to the heat
conduction equation inside spherical droplets assuming that the heat is driven to the
droplet by convection only. The results showed that the ITC model, which is a
limiting case of their model (k; = o0), overpredicted the heating up time of droplets.
Dombrovsky and Sazhin (2003a) suggested another approach for convective heating
of droplets, considering the effect of finite thermal conductivity. The temperature
profile inside the droplet was assumed to be parabolic and was calculated as:

T(R,t) =T (t) + [Ts(t) — T.(DI(R/Ra)?, (2.17)
where T, and T are the temperatures at the centre and the surface of the droplet, R is
the distance from the droplet centre and R; is the droplet radius. Eq. (2.17) satisfied
the equation of the thermal balance.

The droplet surface temperature was calculated based on:
Ty = (Tay + 0.28T,) /3 + 0.2 RgR 4 (T L/ (kyp), (2.18)
where T,, is the droplet average temperature, T, is the gas temperature, & =

0.5Nuky/k;, Nu=2hR;/k, is the Nusselt number and ¥ =1+ 0.2¢. It was

noticed that the parabolic model predicted the droplet surface temperature with about

10% error relative to the rigorous numerical solution to the heat conduction equation
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inside the droplet. To improve the accuracy of this model, a dimensionless
temperature 6 = (T —T,)/ (Tg — To) was introduced. The dimensionless surface

temperature was calculated as:

0, = (eav';O.Zf) [1 — exp(—&F0)], (2.19)

where Fo = k;t/(p,c;R3) is the Fourier number. The model based on Eq. (2.19) was
named the ‘corrected’ parabolic model. The ITC model was also considered, where
the droplet temperature was calculated as:
0 =1 — exp(—3¢&Fo) (2.20)
The results showed that the ‘corrected’ parabolic model predicts more
accurately the surface and average droplet temperatures than the ITC model relative
to the results obtained by the rigorous numerical solution to the heat conduction
equation inside the droplet.
Sazhin et al (2004) provided three analytical solutions to the heat conduction

equation inside spherically-symmetric mono-component droplets:

T _ (62T 2 6T)
at ’

7z T 7oR (2.21)

where Kk = % is the liquid thermal diffusivity, k;, ¢;, and p; are the liquid thermal
Pl

conductivity, specific heat capacity and density respectively. The boundary condition

of Eq. (2.21) was written as (without evaporation):
ar
ORIR=R4z—-0

h(T, — Ts) = ki : (2.22)

and the initial condition 7(=0) = T, (R), where T, = Ty(t) is the droplet’s surface
temperature, T, = T,(¢) is the ambient gas temperature, s is the convection heat
transfer coefficient. The solutions were based on three approximations for the
convection heat transfer coefficient /; constant, almost constant and arbitrary. Firstly
an explicit solution to Eq. (2.21) was obtained for the case of a constant heat transfer
coefficient in the form of a convergent series. This solution was used to solve Eq.
(2.21) for the case of an almost constant heat transfer coefficient. In the case of an
arbitrary (time-dependent) coefficient, the differential heat conduction equation was
reduced to the Volterra integral equation of the second kind.

In the case when the convection heat transfer coefficient A(f) = h = const., the

solution to Eq. (2.21) for R; = const. during the timestep and the corresponding

10
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boundary and initial conditions, applied to a small timestep At = t; — t,, gives the

following value of temperature at the end of the timestep #;, Sazhin et al (2004):

d#o(f)
© An
T(R,ty) = %Zn:l{%’texp[ kpAZti] — Ra s|1|r21/12 ( o(to) — )exp[ kpAZti] —

R sin an “0 | . (2n2) + 1, 2.23
lonl22: kg |0\ ngy) T lett) (2.23)

where a set of positive eigen values A,,, numbered in ascending order (n=1, 2, . . .)
(the trivial solution A = 0 was not considered) was found from the solution to the
following equation:

AcosA + hysind =0, (2.24)
2 _Ra _ sin 24,
llvonll® = 2 (1 2An ) (1 +h0+12)
R
In = T IIZI “RT;0(R) sm(l —) dr,

K _ hTg()Rq — (MRa) _
kR - Clle?l ’ MO(t) - kl ’ hO - ( kl ) 1

Sazhin et al (2005a) showed that the solution to the heat conduction equation
based on the assumption of a constant heat transfer coefficient (2.23) is the most
efficient for implementation into CFD codes. It was also shown that the numerical
scheme based on Solution (2.23), where the heat transfer coefficient is assumed to be
constant, is more effective than the approach based on the numerical solution to the
heat conduction equation inside the droplet and more accurate than the numerical
scheme based on the parabolic temperature profile inside the droplet.

Sazhin et al (2005b) pointed out that, in the absence of break-up, the
difference between the evaporation time predicted by the ETC and ITC models did
not exceed a few percent while the ETC model predicted a decrease in the ignition
delay. In the presence of break-up, the ETC model predicted significant decreases in
the evaporation time and auto-ignition timing compared with the ITC model.

Sazhin et al (2006) presented a comparative analysis between different liquid
and gas phase models for fuel droplet heating and evaporation. The analysis was
based on two liquid phase models (ITC and ETC models), and seven gas phase
models. These were six semi-theoretical models based on various assumptions and a
model based merely on the approximation of experimental data.

The first gas phase model, called ‘M0’, is based on the following

approximations for Sherwood (Sh) and Nusselt (Nu) numbers:

11
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Sh = 2224 [1 4 0.3Re}/*Sc’°) (2.25)
Nu = 2 2C2210[1 4+ 0.3Re}/*Pry/°], (2.26)

the

where Re,; is the Reynolds number as introduced in Eq. (2.15), Sc; = p”f)
gPv

Cpghg -
g

Schmidt number and Pr; = is the Prandtl number. Replacing By, in Eq. (2.26)

with the Spalding heat transfer number By, the ‘M1’ model was obtained. By was
defined as:

va(Tg ~Ts)
Leff

By = (2.27)

where Lggs = L + QL is the power spent on the droplet heating, c,, is the specific

heat capacity of fuel vapour.
The third model, ‘M2’°, was based on the following approximations:

Re; “Scy

o) (2.28)

1/2..1/3
Sh = 2 n+BEm) [1 +0.3 ] ,
Bm
Red Prd

1/25.1/3
F(BT) ]’

Nu = zm(lB;BT)[Hm (2.29)

0.7 In(1+By, T)
Bm,T

where F(BMT) (1 +BMT)

The ‘M4’ model was the one suggested by Abramzon and Sirignano (1989):

Sh =2 In(1+Bp) [1 + (1+RedSCd)1/3 max(l ReY 077) ] (2 30)
2F (By) '

Nu = 2202701 4 (1+ReqPra)!/? max(l,Re%"”)‘l] 2.31)
By 2F (Br) ' '

According to Abramzon and Sirignano (1989), By and By, were linked by the
following equation:

Br=(1+B))?-1, (2.32)

0=(2) ) 23

where Le = k;/ (cpapgD,,) is the Lewis number and

* (1+RegScy)1/3 max(l‘Reg.077)_1
Sht =2 [1 + 2F (By) ]’ (2.34)
* (1+RedPrd)1/3 maX(l,Reg'077)—1
Nu* = 2 [1 + o ] (2.35)

are Sherwood and Nusselt Numbers for non-evaporating droplets respectively.

Sazhin et al (2006) assumed that the rati 151}111
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The model referred to as ‘M3’ is a limiting case of ‘M4’ when F(By) =
F(Br) = 1. When the coefficient 0.3 in Egs. (2.28) and (2.29) was replaced by 0.276
the model was referred to as ‘M5’. The ‘M6’ model was based on the analysis of the

experimental data:

2 [1+0435ReY/?scy/®
Sh = ﬁ[ 1507 ] , (2.36)
_In(1+Bp) [2+0.57ReY/ 2PrY/®
Nu = = [ RETLE , (2.37)
where Bp = M(l —%) and Q. is the heat transferred to the droplet by

convection.

Sazhin et al (2006) pointed out that the ‘M4’ model predicts the evaporation
time closest to the one obtained based on the approximation of experimental data.
They showed that the ETC model leads to marginally better agreement with
experimental data than the ITC model. This is in agreement with the results of
Bertoli and Migliaccio (1999).

Barata (2008) presented a numerical study for evaporation of biofuel droplets
injected through a turbulent cross-stream. The effect of interaction between droplets
was ignored and the ITC model was used to describe the heating process inside the
liquid droplet. This model was applied to the analysis of the evaporation of Diesel
‘DF2’, Rapeseed Methyl Ester ‘RME’, ethanol and n-heptane fuel droplets. The
results showed that ‘RME’ has similar evaporation characteristics to ‘DF2’ fuel
which indicates that ‘RME’ can be used as an alternative fuel to ‘DF2’.

Fieberg et al (2009) studied the evaporation process of single isolated
droplets and monodisperse droplet chains under Diesel engine conditions. For the
liquid phase, they took into account the effect of transient heating of the droplet
based on the ETC model and the dependence of the properties on temperature and
droplet spacing.

Sazhin et al (2010a) extended the model previously suggested by Sazhin et al
(2004), which was based on the assumption of constant droplet radius during each
timestep, to take into account the effect of changes in radius during the individual
timesteps. The radius was assumed to change linearly with time. The results showed
a small difference between the predictions of both models in terms of droplets’

temperature and radius.
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Mitchell et al (2011) suggested a numerical solution to the heat conduction
equation inside the droplet considering the effect of changes in radius during the
individual timesteps. The predictions of their model coincided with those of the
model based on the analytical solution to this equation provided by Sazhin et al
(2010a).

Sazhin et al (2011d) suggested other analytical solutions to the heat conduction
equation inside the droplet considering the effect of changes in radius during the
individual timesteps, assuming that the time evolution of the droplet radius is known.
The predictions of these calculations were compared with the predictions obtained
using their previously suggested approach when the droplet radius was assumed to
be a linear function of time during individual timesteps (Sazhin et al, 2010a). For
sufficiently small timesteps the time evolutions of droplet temperatures and radii
predicted by both methods coincided. The solutions, suggested by Sazhin et al
(2010a, 20114d), predict lower droplet temperature and slower evaporation when the

effects of the reduction of R, are taken into account.

2.2  Multi-component modelling

When modelling multi-component fuel droplets one needs to take into account
that different components evaporate at different rates and this leads to concentration
gradients and mass diffusion in the liquid phase. Sirignano (1999) considered two
limiting cases of liquid diffusivity. The first one refers to the rapid regression or
zero-diffusivity limit (also called the Diffusion Limit ‘DL’ case). The second one
refers to the Infinite Diffusivity limit (or ‘ID’, also called the well mixed case) in
which the concentration of the components is uniform. As mentioned in Chapter 1,
there are two main groups of models for multi-component droplet heating and
evaporation, taking into account the effects of finite species diffusivity inside

droplets. These are described below.

2.2.1 Discrete component models

Abraham and Magi (1998) developed a model for multi-component droplet
evaporation. The multi-component droplets were treated as a combination of several
mono-component droplets with the same size and initial temperature and subject to
the same surrounding conditions. The heat flux to each of the mono-component
droplets was assumed to be the same as the heat flux to the multi-component

droplets. The evaporation rate of each mono-component droplets was calculated and
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the mass balance was used to calculate the evaporation rate of the multi-component
droplets. The model was then implemented into KIVA 3 CFD code and applied to
evaporation of isolated droplets, Diesel spray and Diesel engine conditions. Different
droplet mixtures of C¢H,4, CsHjg, C10H2, and Ci¢H34, under warm operating and cold
start conditions, were considered. For the isolated droplet case, the results showed
that under warm operating conditions the evaporation rate was fast and the droplet
lifetime was short and therefore the diffusion of species vapour was not important.
Under cold start conditions the results showed that the evaporation rates had a
significant effect on the vapour species distribution.

Aggarwal and Mongia (2002) suggested a model for evaporation of multi-
component droplets under high pressure conditions and applied this model to the
operating conditions of the gas turbine combustor. Two commonly used liquid
heating models were considered: Infinite Diffusion, ‘ID’, and Diffusion Limit, ‘DL’.
They compared the vaporization characteristics of bi-component fuel droplets
mixture of 50% C;oHy, — 50% Ci4H3p with mono-component fuel droplets of pure
Ci2Hye. At ambient pressure of 1 atm, the results showed that as the gas temperature
increases from 373 K (represents initial starting and ignition) to 1500 K (represents a
typical lean blowout temperature for ground idle condition) the differences between
evaporation histories of bi-component droplets and the corresponding mono-
component droplets increase as well. They concluded that at high temperatures the
evaporation of a bi-component fuel droplet could be represented by an equivalent
mono-component droplet (50% boiling point) for the case of the ‘DL’ model, while
for the ‘ID’ model this replacement leads to discrepancies between the evaporation
rates of bi-component and mono-component fuel droplets. For low temperature
conditions, the results showed that the evaporation behaviour of bi-component
droplets could not be represented by equivalent mono-component fuel droplets using
both liquid phase models. It was also noticed that the differences in the vaporization
characteristics using the two liquid phase models for bi-component droplets are quite
significant while they are negligible for the equivalent mono-component droplets.

Brenn et al (2007) extended the model suggested by Abramzon and Sirignano
(1989) for mono-component droplets to enable it to analyse acoustically levitated
multi-component droplets. They noticed that the acoustically levitated droplets are
well mixed due to the interaction with the acoustic streaming and therefore the

droplets have flat temperature profiles. For this reason the ITC model was used to
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simulate the heating of the liquid phase. The acoustic levitator was used to carry out
experiments on the evaporation behaviour of single droplets of multi-component
liquids. In this technique the droplet is suspended without any direct mechanical
contact by making use of the quasi-steady sound pressure distribution in a confined
space. The experiments were carried out for droplets which consisted of different
mixtures of methanol, ethanol, 1-butanol, n-heptane, water and n-decane. The results
indicated that the maximum deviation between both computed and measured
lifetimes is 5% for simple ternary mixtures and more complex cases of five
components.

Sirignano and Wu (2008) presented the analysis of evaporation of eight
multi-component (n-heptane, n-octane and n-decane) droplets in a cubic array. The
concept of mass flux potential was introduced for both liquid and gas phase
calculations. Three models for the liquid diffusion process were considered. The first
model is ‘transient behaviour’ at which heat and mass diffusion times and droplet
lifetimes are of the same order of magnitude. The second model is one of the limiting
cases of transient behaviour, the ‘fast vaporization or well mixed’ (ID) model, in
which the regression rate of the droplet surface is much greater than characteristic
times for heat and mass diffusion. The third model is the other limiting case, the
‘slow vaporization or Diffusion Limit’ (DL) model, in which the times for liquid
phase heat and mass diffusions are very short compared with the droplet lifetime.
The results indicated that the isolated droplets evaporate faster than the interactive
droplets. At low temperatures, the results indicated that the slow vaporization limit
gives acceptable predictions for mono-component droplets but not for multi-
component droplets. At high temperatures, the difference between the predictions of
slow vaporization limit and transient behaviour became noticeable for both mono-
and multi-component droplets.

Gosh et al (2008) studied the evaporation of a dense cluster of bi-component
fuel droplets in a spray using a spherical cell model. The spray was assumed to be a
cluster of identical droplets; each single droplet evaporates in a single unit spherical
cell inside the cluster. The interstitial region between the touching spherical cells,
called the ambient region, was assumed to be a common sink for the fuel vapour and
the energy source. They validated their model against experimental results of
evaporation for tetralin droplets (mono-component) in nitrogen for different cell
radii.
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Maqua et al (2008b) studied the evaporation process of bi-component droplets
(ethanol/acetone) numerically and experimentally under different aerothermal
conditions (hot air plume and ambient temperature). The three-colour laser-induced
fluorescence (LIF) technique was used to measure the droplet temperature regardless
of the composition and the droplet velocity was measured by means of Laser
Doppler Anemometry (LDA). The uncertainty of the droplet temperature
measurements is about £1.3 °C. For the numerical part of their study, it was assumed
that the droplet is spherically-symmetric. The liquid mass fraction of the i species

Y;; and the droplet temperature 7 were calculated based on the following equation:

OF r"dR OF
ot R dtor*

+ = (.Vr")F = 2 AT°F, (2.38)
where F denotes either the droplet temperature 7 or the mass fraction Y;, R is the
radial distance to the droplet centre, r* = R /Ry is the normalised radius and v is the
velocity field within the droplet.

They assumed that the internal streamlines of the liquid circulating within the
droplet follow the spherical Hill vortex pattern with stream function in the following

form:

Y@, 0,¢) = — 2 re2(1 - %) sin?0, (2.39)
where (r*, 0, ¢) are the spherical coordinates of a point within the droplet and u; is
the maximum surface velocity calculated based on Eq. (2.15).

Good agreement was achieved between the numerical and experimental

results in terms of droplet temperature for different initial conditions (droplet radius,

velocity, temperatures and compositions).

2.2.2 Many components models

Tamim and Hallett (1995) used the continuous thermodynamics approach for
modelling evaporation of multi-component droplets with large number of
components. The composition and properties of the mixture, and vapour-liquid
equilibrium were described based on the continuous thermodynamics method in
which the composition of the mixture is represented by a Probability Density
Function (PDF) rather than by discrete components. The function selected for both
gas and liquid phases was the Gamma distribution I'. The distribution function was

calculated as:

fn(D =S8 exp[- ()] (2.40)
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where [ is the property of the component (they used the molecular weight to
represent this property), I =y is the origin , @ and f are parameters that determine
the shape of the distribution and y determines the original shift. They built their
analysis of the liquid phase on the ‘ID’ and ‘ITC’ models. For the liquid-vapour
equilibrium they used Raoult’s law with the Clausius-Clapeyron. The model was
applied to the analysis of evaporation of Diesel and gasoline fuels.

Lippert and Reitz (1997) applied the continuous thermodynamics approach to
multidimensional calculations for droplets and sprays. Similarly to Tamim and
Hallett (1995), the Gamma distribution (Eq. (2.40)) was used, the droplets were
assumed to have uniform temperature and a well mixed liquid phase (ITC and ID
models) and Raoult’s law with the Clausius-Clapeyron equation was used. They
compared the predictions of their model for the mono-component case (the
parameters used for iso-octane were a = 100.0, f = 0.1 and y = 104) with the
standard model in KIVA CFD code and the mono-component model suggested by
Han et al (1996). The results showed good agreement between their model and Han’s
model. Also the results showed that heavy components appeared at the outer edge of
the spray in agreement with the predictions of Abraham and Magi (1998).

Hallett (2000) simplified the model earlier developed by Tamim and Hallett
(1995). He assumed that the fuel consists only of n-paraffins and developed a
simplified quasi-steady model for evaporation of multi-component droplets by
neglecting the gas-phase transients, assuming spherical symmetry and constant
properties. The results showed that the simplified model reproduced the predictions
of the full model in terms of droplet temperature, the percentage of evaporated mass
and fuel vapour mole fraction at the droplet surface for the ‘ID’ liquid phase model.
For the ‘DL’ liquid phase model, it was noticed that the droplet temperature
increased up to the wet bulb temperature and then it remained constant and the
steady evaporation appeared clearly, while for the ‘ID’ model it was noticed that the
droplet temperature increased throughout the whole of its lifetime. Despite this
difference the droplet lifetimes predicted by both models were very close. The
results also showed the applicability of the d’-law for modelling multi-component
droplets.

Zhu and Reitz (2002) developed a comprehensive evaporation model for fuel

droplets with large number of components in a high pressure environment using the
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continuous thermodynamics approach. This model was shown to be independent of
the form of the distribution function that is selected for the continuous fuel species
and they used the Gamma distribution. They derived the transport equations for the
semi-continuous systems. The liquid phase included liquid fuel (continuous) and the
ambient gas (discrete) while the gas phase included fuel vapour (continuous) and the
ambient gas (discrete). The model was applied to the modelling of evaporation of
Diesel fuel with composition parameters similar to those used by Tamim and Hallett
(1995) and evaporation of n-tridecane as mono-component fuel with @ = 100.0,
B = 0.1 and y = 175.0 and with the mean molecular weight corresponding to Diesel
fuel. The droplets were injected into nitrogen and the results showed that for high
pressure conditions the heat of vaporization increases to a maximum value then
decreases with increasing temperature. For low pressures the heat of vaporization
decreased with increasing temperature. The equivalent mono-component fuel (n-
tridecane) predicted smaller heat of vaporization especially at low droplet
temperatures and high ambient pressures conditions. They emphasised the
importance of considering the composition of multi-component fuels under sub- and
super-critical pressure conditions.

Arias-Zugasti and Rosner (2003) introduced spectral representation of the PDF
with a number of components (pseudo-components) much smaller than the number
of components in the original chemical mixture. They generalised the former method
in which the PDF describing the mixture was assumed to have a predetermined
mathematical form as in Eq. (2.40). The fuel was considered to be composed only of
straight-chain n-alkanes (C,Hy,+,) where n is the number of carbon atoms and varies
between ny and np. For gasoline fuel it varied from 5 to 18 and for Diesel and JP4
fuels it varied from 5 to 25 and from 5 to 16 respectively.

Burger et al (2003) presented an alternative method, known as the Distillation
Curve model, for modelling evaporation of multi-component fuel droplets at
elevated pressures. This model is based on algebraic equations describing fractional
boiling during the droplet evaporation process. It was pointed out that the predictions
of the distillation curve for Jet-Al fuel agreed well with the results of the ‘DL’
model for Jet-Al fuel approximated as a bi-component mixture of 44% n-decane and
56% n-tetradecane.

Abdel-Qader and Hallett (2005) compared the two limiting cases of liquid

phase mixing (ID and DL models) for evaporation of single droplets using the
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continuous thermodynamics technique. They considered two cases of the distribution
function. The first was the single distribution function and the second was a sum of
two distribution functions with widely differing molecular weights (n-heptane and n-
dodecane, a ‘dumbbell mixture’). The results using the single distribution function
showed that neither temperature nor evaporation rate are significantly affected by
internal mixing until near the end of the droplet’s lifetime. The results indicated that
the largest effects of the liquid mixing models are seen for two discrete components
and these effects decrease when the discrete components are replaced by two broad
distributions to form a dumbbell mixture.

Lage (2007) developed a pseudo-component model to represent continuous
mixtures as a combination of 2 or 3 pseudo-components of each group of
components. The model was based on the Gaussian quadrature rule whose weight
function is the molar fraction distribution of the complex mixture. He called this
model the Quadrature Method of Moments (QMOM). Laurent et al (2009) compared
the QMOM with the Gamma-PDF method used to introduce complex hydrocarbons.
The QMOM was shown to represent continuous mixtures better than the Gamma-
PDF when fuel vapour condenses on the droplet surface.

Zhang and Kong (2009) used the continuous thermodynamics approach for
modelling of multi-component fuel droplets. They used the Gamma distribution with
molecular weight as a parameter for describing fuel composition. They implemented
this model into KIVA 3V CFD code. The initial distribution parameters used for
Diesel fuel were: o = 23.0, f = 8.15 and y = 0.0 and for gasoline fuel: a = 5.7,
B = 15.0 and y = 0.0. They selected these parameters to match the distillation curve
of the specific fuel based on the linear relationship between boiling point and
molecular weight of typical hydrocarbon fuel. The results referring to single droplet
evaporation showed that the mean molecular weight of the fuel increases during the
droplet’s lifetime indicating that the heavier components remain in the droplet until
the end of its lifetime. It was noticed that the predicted droplet lifetimes were shorter
than those predicted by Lippert and Reitz (1997) for the same conditions.

Ra and Reitz (2009) used the discrete multi-component approach (DC model)
to model the evaporation of real fuels with large number of components (gasoline
and Diesel fuels). They approximated Diesel fuel as a mixture of six species and

gasoline fuel as a mixture of seven components. Their approach took into account
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the effect of finite thermal diffusivity but assumed infinite mass diffusivity for the
liquid phase. The results showed good agreement with the experimental data.

Zhang and Kong (2010) developed a hybrid vaporization model based on both
the continuous thermodynamics approach, to describe petroleum fuels, and the
discrete components approach, to represent biofuels and mono-component
substances. It was assumed that liquid phase heat and mass diffusivities were
infinite. They used Raoult’s law for calculation of the vapour surface mass fraction
and approximated biodiesel as a mixture of five kinds of fatty acids. For the case of
mono-component n-heptane droplets, it was shown that there is good agreement
between the predictions of their model and the experimental results by Nomura et al
(1996). They also tested their model for the case of evaporation of binary mixture of
n-heptane and n-decane and the results showed poor agreement with the
experimental results by Gokalp et al (1994). The results for biodiesel droplets were
shown to have good agreement with the experimental results by Morin et al (2000).
For Diesel-biodiesel mixtures, it was shown that the droplet lifetime increases as the
percentage of biodiesel increases. The results also showed that any mixture with up
to 20% by volume of biodiesel behaves almost as pure Diesel fuel. For gasoline-
ethanol mixtures it was noticed that the ethanol volume fraction increases at the
initial stage of the evaporation process and then decreases. This behaviour indicated
that part of gasoline components is more volatile than ethanol and so ethanol mass
fraction increases until these light components have completely evaporated.

Rivard and Briiggemann (2010) introduced a semi-continuous model of
evaporation of pure substance mixed with a continuous mixture (ethanol-gasoline
mixture). For the gas phase, they applied Raoult’s law. For the liquid phase, they
considered three different models: the ‘ID’ model, the ‘DL’ model and the combined
model where the composition is limited by diffusion. It was pointed out that the
difference between the prediction of the three models increases as the ambient
temperature decreases. The droplet lifetime predicted by the ‘DL’ model is shown to
be about 30% longer than the one predicted by the ‘ID’ model. The results of the
combined model were shown to always be in between those of the ‘ID’ and ‘DL’
models.

Hallett and Legault (2011) used the continuous thermodynamics approach to
model biodiesel fuel. They represented the fuel using three distribution functions of

three different chemical groups: the fatty acid methyl ester (FAME) fraction
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represents the bulk of the fuel, a small light FAME fraction reproduces the early part
of the distillation curve and a monoglyceride (MGC) fraction reproduces the
partially unconverted feedstock in the fuel. The results demonstrated that the model

can reproduce the behaviour of actual biodiesel fuel.

2.3 Experimental studies

Nomura et al (1996) studied experimentally the evaporation of an individual
suspended n-heptane droplet in a nitrogen atmosphere at high pressures and
temperatures under microgravity conditions, which were produced using 5-m and
110-m drop towers and parabolic flights, to prevent natural convection that
complicates the phenomena; under microgravity conditions, radial vapour flow
occurs instead of natural convection and the vapour layer around the droplet is
thicker than under normal gravity conditions. They calculated the temporal
variations of droplet diameter for ambient pressure range of 0.1-2.0 MPa with
ambient temperatures of 400-800 K and for ambient pressure of 5.0 MPa with
ambient temperatures of 400-600 K. For the ambient pressure range of 0.1-2.0 MPa,
it was shown that the slope of the squared diameter of the droplet increases with time
but later it becomes constant. At 5.0 MPa, this slope becomes less in the latter
periods of the evaporation time. The results showed that, at ambient pressure of 0.1
MPa the ratio of heat-up time to the evaporation time was almost independent of
ambient temperature and the range of its values was about 0.1 - 0.2. As ambient
pressure increased the tendency of this ratio to rise with ambient temperature became
noticeable. At ambient temperatures higher than boiling point, the time required to
heat the droplet up to the wet bulb temperature increased proportionally to the
required time for complete evaporation as ambient temperature increased. For
ambient temperatures less than boiling point; the wet bulb temperature and the
temperature difference between the droplet and the ambient gas increased as ambient
temperature increased. For ambient temperatures above 550 K, the evaporating time
decreased as ambient pressure increased while for ambient temperatures below 450
K, the evaporating time increased as the ambient pressure increased and the
evaporating time was almost independent of ambient pressure at ambient
temperatures of about 480 K.

Two main techniques are used to measure droplet temperature, (Lavieille et al,

2000). The first is the rainbow refractometer method (van Beeck and Riethmuller,
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1997), which is based on the variation of the refractive index of the droplet with
temperature. A visible laser beam passes through the droplet and produces a rainbow
pattern. The rainbow pattern location, which changes with temperature, determines
the refractive index. It was noticed that the rainbow technique is reliable when the
temperature of the droplet is almost constant and it is not recommended when strong
thermal gradients in the droplet exist. The second method uses the droplet Infrared
(‘IR’) emissions to determine its temperature. The droplet stream is placed in front of
an extended blackbody, whose temperature can be adjusted. A detector collects the
blackbody flux emitted by the droplets. The main difficulty of this technique is
determination of the droplet’s emissivity. Its limitation is that only a surface
temperature is determined.

Lavieille et al. (2000) presented the fundamentals of Laser Induced
Fluorescence technique (LIF) for the temperature measurement of monodisperse
droplets and delivered the first results on the application from this method. Ethanol
fuel (95% ethanol- 5% water) was seeded with an organic dye (rhodamine B) as
adequate tracer, due to its strong temperature sensitivity and temperature dependence
on the fluorescence of this dye. They also took into account several phenomena such
as: the lensing effect for incoming laser light due to the spherical droplet interface
with air, since curvature of the interface changes as the droplet size changes; varying
focusing of the light and distribution of laser energy through the droplet; changes in
droplet size due to thermal expansion or contraction and subsequent fluorescent
tracer concentration variation. They measured the droplet temperature at the
injection point by the thermocouple and 15 mm downstream from the injection point
using the LIF method. It was noticed that the LIF method is able to measure the
droplet temperature with errors not more than 1 °C in a monodisperse stream. This
technique was found to depend on laser intensity, dye concentration and droplet
volume.

Lavieille et al (2001) eliminated the dependence of the laser intensity, dye
concentration and droplet volume on the fluorescence signal and they kept the sole
effect of temperature on this signal by introducing the two-colour LIF technique. The
ratio of the fluorescence signals measured by the two spectral bands eliminates the
volume dependence. The effect of the dye concentration was investigated by using
two different concentrations of dye and the results showed that decreasing the

concentration of the dye to half of its value does not significantly affect the
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fluorescence ratio. This ratio was found to be independent of laser power within 1%,
corresponding to an error in the temperature of less than 0.5 °C, and it does not
change with the change of the measuring volume size. Lavieille et al (2002a)
demonstrated the ability of the two-colour LIF technique to provide average
temperature of evaporating and combusting droplets. In a latter paper, Lavieille et al
(2002b) determined the temperature distribution inside the droplet by scanning it with
a sufficiently small probe volume, compared with the droplet volume, generated by
the intersection of two laser beams issuing from the same laser source. They applied
this technique to droplets of 200 um diameter. The intersection volume between the
two laser beams was (20x20x90 um) which is smaller than the droplet volume. The
collection volume had a diameter of 68 pm and therefore the resulting probe volume
was (20x20x68 um) (see Fig. 2.1).
The results indicated the existence of convective heating inside the droplets.

It was demonstrated that this method was useful for measuring droplet temperatures.

% Y A X é‘x
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Incident g A Z) ¥
laser beams PSR, . e
Beam f=80 mm
expander 8, =90 um
Laser excitation volume
20 pm

Probe volume

Collection optics Collection cylinder
axis
Collected laser excited volume

Fig. 2.1 Definition of the probe volume, Lavieille et al (2002b).

In the experiment described by Castanet et al (2002), a linear monodisperse
droplet stream was generated by Rayleigh disintegration of a liquid jet undergoing
vibrations generated in a piezoelectric ceramic. The fuel was pre-heated in the
injector by means of externally heated circulating water. The temperature of the fuel

was measured exactly at the injection point with a K type thermocouple situated
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within the injector body. For specific frequencies of forced mechanical vibration, the
liquid jet broke up into equally spaced and mono-sized droplets.

Castanet et al (2002) implemented electrostatic deviator plates at the injector
exit in order to adjust the droplets spacing without changing the droplet diameter.
The droplets stream then passed through the thermal boundary layer of a heated
vertical plate as shown in Fig. 2.2. The droplet size was measured using a light
scattering technique (interferential method) while the droplet velocity was measured
by Laser Doppler Velocimetry (LDV). Measured droplet temperature, velocity and
size were used to estimate the heat fluxes acting on the evaporating droplets for both
heat-up process and steady-state of evaporation. The results showed that the heat
convection coefficient for the heat-up process is higher than the one in the steady
evaporation case. It was also demonstrated that corrections to the Nusselt number

have to be applied to compensate for the effect of interaction between droplets.
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Fig. 2.2 Experimental set-up used by Castanet et al (2002).
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Castanet et al (2005) used phase Doppler anemometry for measurement of
droplet sizes and calculated the heat fluxes (internal flux, evaporation flux and
convective heat flux) acting on evaporating ethanol droplets moving into a flame.
The Nusselt and Sherwood numbers were calculated from the heat fluxes and
corrections to them were presented to take into account the effect of interaction

between droplets in the following form 7:

n=—2 =" _ tanh(0.36C — 0.82), (2.41)

Nujso Shiso

where C is the distance parameter, defined as the droplets spacing divided by their
diameter. The subscript i, refers to isolated droplets. For distance parameters larger
than 9, the interaction effects were shown to be negligible. For distance parameters
less than 9, the evaporation rate was shown to decrease with increasing values of the
distance parameter.

Maqua et al (2008a) extended the experiments described by Castanet et al
(2005) to evaporation of ethanol and acetone as mono-component droplets. The
measurements were carried out in two different conditions: heating and evaporation
of droplets in a hot air flow and in flame. They compared the experimental results
with numerical results based on the ETC model and the analytical solution (Eq.
(2.23)). The Sherwood and Nusselt numbers for isolated droplets were calculated
based on Egs. (2.30) and (2.31) respectively. Corrections due to droplet interaction
were taken into account based on Eq. (2.41). The results showed that there is good
agreement between the measured temperature and the predicted average temperature
for relatively small droplets (initial radii of 65 um), while for relatively large
droplets (initial radii of 120 um) the measured temperature was shown to be close to
the predicted temperatures at the droplet centre.

There are few available experimental data on the temporal evolution of multi-
component droplet temperature due to the lack of measurement techniques available
for dealing with multi-component droplets. Maqua et al (2006) developed a
technique for measuring multi-component droplet temperature based on three-colour
LIF. The fluorescence signal was found to depend on both composition and
temperature. They showed that it is possible to separate the dependence of
composition and temperature by using a third spectral band for detection. Maqua

(2007) and Magqua et al (2008b) produced further experiments for bi-component fuel
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droplets. A brief description of these experiments will be presented where they

provide validation of our models.

2.4 Conclusions of Chapter 2
The classifications of models for fuel droplets heating and evaporation are

schematically presented below.

(a)

Fuel droplet composition

MMono-component fuel droplet Multi-comp onent fuel droplet

(b)

Diroplet's boundary

Moving boundary
Sazhin et al (2010a; 20114}
Mitchell et al (20113

Fuzev et al (2012)

Stationary boundary

Most papers

Fig. 2.3 Classifications of fuel droplet heating and evaporation models according to
fuel composition (a) and droplet’s boundary state (b).

Fig. 2.3a shows the classification of the heating and evaporation models
according to the initial fuel composition while Fig. 2.3b shows another classification
of the models based on the state of the droplet boundary; either stationary or moving
boundary during individual timesteps. The second classification can be applied to
mono- and multi-component droplets.

Fig. 2.4 summarises the models for mono- and multi-component fuel droplets

heating and evaporation.
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Fig. 2.4 Summary of heating and evaporating models for mono-component droplets
(a) and multi-component droplets (b).
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The motivation behind the thesis could be summarised as follows:

1. Investigation of the applicability of the model developed by Sazhin et
al (2004) to a wider range of substances (acetone, ethanol, 3-pentanone,
n-heptane, n-decane and n-dodecane) and different experimental

conditions.

2. Development of a new simplified model for multi-component droplets
with a small number of components (DC model) based on a new
analytical solution to the species diffusion equation inside droplets and
validation of this model against available experimental data and the
results based on the numerical solution to temperature and species

diffusion equations inside droplets.

3. Studying the effect of moving boundaries on the predictions of the
simplified model based on the solution provided by Sazhin et al
(2010a). Generalising the simplified model to take into account the
effect of evaporating droplets on the surrounding gas and validation of
the new model against available experimental data. The optimisation of

the code.

4. Applying the above simplified model to the case of droplets with large

number of components via a new quasi-discrete model.

5. Applying the new quasi-discrete model to the analysis of heating and

evaporation of Diesel and gasoline fuels.
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3 Monodisperse mono-component fuel droplets heating and

evaporation

3.1 Introduction

The preliminary validation of the model developed by Sazhin et al (2004)
against published experimental data was reported in Sazhin et al (2005b). This
validation, however, was limited to the comparison of predicted and calculated
droplet diameters or global characteristics such as the ignition delay. A more direct
validation of the model, based on the comparison of the predictions of the model and
the results of simultaneous measurement of average temperatures and diameters of
monodisperse mono-component droplets, was reported by Maqua et al (2008a). The
latter comparison, however, was limited to just two substances: ethanol and acetone
in two different experimental conditions. The aim of this chapter is to perform a
comparison between the predictions of the model suggested by Sazhin et al (2004)
and the available experimental data, similar to the one reported in Maqua et al
(2008a) but for a wider range of substances and different experimental conditions.

The substances to be considered are: acetone, ethanol, 3-pentanone, n-
heptane, n-decane and n-dodecane. The experimental data used in this analysis are
the same as earlier reported in Deprédurand et al (2010). These data were used in
Deprédurand et al (2010) for validation of the model different from the one
developed by Sazhin et al (2004). The model used by Deprédurand et al (2010),
originally described by Castanet (2004) and Deprédurand (2009), is based on the
assumption that both Nu and Sh numbers are estimated based on experimental data.
Hence, this chapter is complementary to both earlier published papers (Maqua et al,
2008a; Deprédurand et al, 2010).

The model used in the analysis of this chapter is summarised in Section 3.2.
The experimental set-up is briefly described in Section 3.3. In Section 3.4 the
predictions of the model are compared with experimental data. The main results of

this chapter are summarised in Section 3.5.
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3.2 Model
The model used in this chapter was developed by Sazhin et al (2004). The
equations on which this model is based, their approximations and analytical

solutions where possible, are presented and discussed below.

3.2.1 Droplet heating

The process of heating (or cooling) of stationary spherically-symmetric
mono-component droplets is described by the transient heat conduction equation for
the temperature T = T(t,R) in the liquid phase, Eq. (2.21) (Carslaw and Jaeger,
1986; Sazhin et al, 2004) with boundary condition without evaporation described by
Eq. (2.22).

Solution (2.23) is valid for hy > -1, which is satisfied, remembering the
physical background of the problem (4 > 0). When deriving Solution (2.23) it was

assumed that it is applied to individual short timesteps. In this case Sazhin et al

(2004) ignored the time dependence of & and % during the timesteps and

assumed that 2#0® ~ (d léot(f)> _

o = 1, Note that uy depends on time via T, only. Ten

terms in the series (2.23) were used in calculations.

To take into account the effect of droplet evaporation in analytical solution
(2.23), gas temperature should be replaced by the so-called effective temperature
defined as (Sazhin et al, 2004):

Tesg =Ty + % (3.1)
where L is the latent heat of evaporation, 4 is the convection heat transfer coefficient,

linked with the Nusselt number Nu via the equation: Nu = 2R;h/k, and the value

of R4 can be taken from the previous timestep and estimated based on Eq. (3.2).

The average surface temperature in a moving droplet can still be correctly
predicted by Eq. (2.21), with appropriate boundary conditions, and its solution (2.23)
if the liquid thermal conductivity k; is replaced by the so-called effective thermal

conductivity ke via Eq. (2.14) but with Regqy = 2‘”““2;“9““

l

The ETC model was developed mainly for the estimation of the average
surface temperature of droplets, which controls droplet evaporation (Abramzon and
Sirignano, 1989; Abramzon and Sazhin, 2005; 2006). It cannot predict adequately

the details of the distribution of temperature inside droplets, which include vortex
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structures for non-zero droplet velocities, but these are not required in most practical
engineering applications. Hence, the applicability of this model can be justified.
The actual change of droplet radius Ry is calculated as:
Ryq = Rar + Ryg, (3.2)
where R,p is the change of droplet radius due to thermal expansion/contraction and

can be calculated based on the following equation (Sazhin et al, 2005a):

1/3
3 _ Rg(Tavo) | [ P1(Tav,0) _
R = 2t | () o

where T,y o and T, ; are average droplet temperatures at the beginning ¢ = 7y and the

end of the timestep ¢ = f; and At = t; — t,. The value of Ry is controlled by fuel
vapour diffusion from the droplet surface to the ambient gas. It can be found from

the following equation (Sazhin, 2006):
_ _Ta
- 471'R(21pl ’

Rap (3.4)
where m, is the droplet evaporation rate, as discussed in Section 3.2.2.

The value of Nujg, for an isolated moving droplet is estimated based on the
so-called ‘M4’ model via Eq. (2.31) (Abramzon and Sirignano, 1989; Sazhin et al,

2006).

3.2.2 Droplet evaporation
In the case of isolated droplets, their evaporation rate is given by the
following equation (Castanet et al, 2002):

My = —21RyDypg By Shise, (3.5)
where pg is the gas density, D, is the binary diffusion coefficient of vapour in air and
it is estimated as described in Appendix A and By is the Spalding mass transfer
number defined by Eq. (2.2). The mass fractions of vapour near the droplet surface
(Y,s) and in the ambient gas (V,, = 0.0) are calculated from the Clausius—

Clapeyron equation (Kuo, 1986):

1 1

Pv = Pamb€XP [% (T_b - ;S)] (3.6)
where M is the molar mass, L is the latent heat of evaporation of fuel, 7} is the
boiling temperature of the fuel and p,,,;, is the ambient pressure. When deriving Eq.
(3.6) it was taken into account that p,, is equal to the ambient pressure when T = T}.

Note that there are typos in Egs. (135) and (136) of Sazhin (2006).
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The value of Sh;, for an isolated moving droplet is estimated based on the
so-called ‘M4’ model via Eq. (2.30) (Abramzon and Sirignano, 1989; Sazhin et al
2006).

The values of the transport coefficients were taken for air at the reference
temperature Tyor = Ty + (Tg — Ts) /3 (Incropera and DeWitt, 2002; Sazhin, 2006).
The contribution of fuel vapour to the transport properties of air and the effects of

droplets on air are ignored at this stage.

3.3 Experimental set-up

Droplet diameters and average temperatures were measured using the
experimental set-up at the University of Nancy (France), which is described in a
number of papers and theses, including (Deprédurand, 2009; Deprédurand et al,
2010). This will be only briefly summarised below.

Linear monodisperse droplet streams were generated by Rayleigh
disintegration of a liquid jet undergoing vibrations generated in a piezoelectric
ceramic. The fuel was pre-heated in the injector by means of externally heated
circulating water. The temperature of the fuel was measured exactly at the injection
point with a K type thermocouple situated within the injector body. For specific
frequencies of forced mechanical vibration, the liquid jet broke up into equally
spaced and mono-sized droplets. The droplets were then injected into an enclosure
fed with hot air coming from an electrical heater. In order to limit the thermal losses,
a resistive electrical wire was inserted within the enclosure wall so that the wall
temperature could be regulated to match that of the entering air (see Fig. 3.1). A
temperature of up to 673 K could be reached. The air velocity was maintained at
between 0.1 and 0.3 m/s and the air flow was quietened by forcing it to go through a
drilled wall and metallic foam. An estimate of the diffusion length L; could be
obtained taking into account that the diffusivity D,, is of the order of 1075 m? /s and
maximal diffusion duration ¢ is equal to 25 ms. The latter corresponds to the time

required for a droplet to be transported through the enclosure. Based on these data,
diffusion length can be estimated as L; = /D,t = 0.5 mm which is negligible

compared to the inner radius of the enclosure (10 cm). This ensures non-saturated
conditions. Additionally, glass windows were mounted in the wall to provide optical
access. The two-colour laser-induced thermometry was used to characterize the

droplet temperature, Lavieille et al (2001). The method involved the seeding of the
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liquid fuel with a small quantity of a fluorescent tracer, pyromethene 597- C8. An
interesting feature of pyrromethene 597-C8 relates to its temperature sensitivity that
is almost unchanged when dissolved into any of the selected fuels (Deprédurand et
al, 2008). The ratio of the fluorescence intensity detected in two spectral bands is a
function of the temperature regardless of laser intensity, time-dependent tracer
concentration, and measurement volume (Deprédurand et al, 2008). The velocity of
the droplets was measured by Laser Doppler Velocimetry using the same laser light
source as for the fluorescence excitation. The droplet size reduction was determined
using the light scattering in the forward direction, where a stationary interference
pattern is created.

Six liquid fuels were tested: acetone, ethanol, 3-pentanone, n-heptane, n-

decane and n-dodecane. All physical properties of fuels are described in Appendix B.
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Fig. 3.1 Layout of the heated enclosure and the droplet generator used by
Deprédurand et al (2010).

An investigation of a number of droplet streams was performed. The
temperature, velocity and diameter of the droplets were measured simultaneously at
each measurement point. The periodicity of the droplets in the chain and the steady-
state nature of their stream allowed the conversion of the droplet distance from the

injector into time. The focus of this analysis is based on the evolution of droplets’
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temperatures and radii, starting from the moment when the first droplet was observed
near the entrance to the enclosure. By placing a thermocouple at different locations it
was established that air temperature T, did not vary inside the chamber. Hence, it
was considered to be constant during each experiment in the modelling. The droplet
absolute velocities were approximated as linear functions of time (measured from the
moment of injection):

Ug = U — Uyt, (3.7)
where constants u; and u, were determined for each experiment (Table 3.1),
alongside the ratios 1y, = Nu/Nujs, and ng, = Sh/Sh;g, , describing the effects of
interaction between droplets in the stream, where the subscript 5, refers to isolated
droplets. The error of determination of uy; is comparable with the ambient air
velocities up to 0.3 m/s. This justifies the assumption that the absolute droplet
velocities, estimated by Eq. (3.7), are equal to droplet velocities relative to ambient
air. These velocities were used for the estimation of the Nusselt and Sherwood
numbers for isolated droplets, Deprédurand et al (2010).

The values of the Nusselt and Sherwood numbers were estimated based on
simultaneous measurements of droplet sizes and mean temperatures. These
measurements allowed the evaluation of heat fluxes responsible for droplet heating
and evaporation rates. These rates, alongside the measured time evolution of droplet
mean temperatures, were used for the estimate of the convective heat flux,
responsible for droplet heating, and mass flux of fuel vapour leaving the droplet. The
main difficulty in converting these estimates into the estimates of the Nusselt and
Sherwood numbers relates to the fact that the surface droplet temperatures T; were
not directly measured and had to be estimated. This issue is addressed in
(Deprédurand, 2009; Deprédurand et al, 2010), where an iterative approach based on
a simplified analysis of the energy balance of evaporation was used. After the droplet
surface temperatures were estimated, the values of the Nusselt and Sherwood
numbers were derived from the estimated heat and mass fluxes. Using the values of
these numbers for isolated droplets, calculated from the Abramzon and Sirignano
(1989) model, the values of ny, and ngy,, presented in Table 3.1, were calculated.

Three experiments were performed with each fuel, except 3-pentanone, for

which only two experiments were performed. The values of T, distance parameter

C (ratio of the distance between droplets and their diameter), initial droplet diameters
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Dg4o (measured directly when the first droplets near the entrance to the enclosure
were observed), NNy, Msh, U1 and u, for each experiment are presented in Table 3.1,
alongside boiling and critical temperatures (T} and T, ) for each substance (Poling et
al, 2000). The values of C are shown to indicate the closeness of droplets in these

experiments.

Case Parameter | Acet Ethan | 3-Pen n-Hep | n-Dec n-Dod

T}, (K) 329.22 | 351.80 | 375.14 | 371.57 | 477.30 |489.48

T, (K) 508.10 | 513.92 | 561.50 | 540.20 | 617.70 | 658.00

T, (K) 640 643 634 644 643 643
C 4.5 4.3 4.9 4.4 3.7 4.6
Dy, (um) 1226 | 119.6 118.2 131.1 121.5 110.0
1 MNu 0.42 0.26 0.23 0.38 0.18 0.19
Nsh 0.43 0.38 0.53 0.57 0.18 0.19

uq (m/s) 11.16 |9.869 10.86 12.8 9.59 9.246

u, (m/(s.ms)) | 0.198 | 0.214 0.254 0.329 0.220 0.281

T, (K) 645 643 645 645 645 644
C 5.5 6.1 4.0 5.3 4.4 6.9
Doq (um) 132.2 | 130.28 | 123.3 134.2 128.37 | 129.0
2 MNu 0.43 0.42 0.22 0.35 0.24 0.22
Nsh 0.42 0.82 0.33 0.84 0.24 0.22

uq (m/s) 14.12 | 12.64 9.454 15.44 11.88 13.14

u, (m/(s.ms)) | 0.276 | 0.268 0.224 0.446 0.329 0.573

T, (K) 647 | 644 n/a 647 647 643
C 33 |31 n/a 3.8 5.4 3.0
Dog(um) | 1072 | 1124 | n/a 122.8 | 1248 | 98.99
3 TNu 035 |0.36 n/a 0.28 0.18 0.22
Nsh 026 |0.38 n/a 0.50 0.18 0.22
w (m/s) | 7.122 | 6.889 |n/a 1056 | 13.55 | 6.091
U, (m/(s.ms)) | 0.113 | 0.123 | n/a 0244 0307 | 0218

Table 3.1 The values of T,, C, Do, NNy, Nsh» U1 and u, for three experiments with
acetone, ethanol, 3-pentanone, n-heptane, n-decane and n-dodecane droplets
(abbreviated as acet, ethan, 3-pen, n-hep, n-dec and n-dod). In the case of n-decane
and n-dodecane, the values of 75, were not estimated experimentally, but assumed to
be equal to nyy.

The uncertainties in the measurement of the droplet diameters were expected
to be about 0.5 um in most cases and the uncertainties in the temperature
measurements were expected to be about £1 K. Depending on the fuel and the
experimental conditions, the uncertainties in the estimates of 7g, and 7y, were
expected to be between 2% and 25% (Deprédurand et al, 2010). However, in the

case of n-decane and n-dodecane, which have particularly low volatility, the mass

loss due to evaporation was so low that it was not possible to determine accurately a
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value for ng,. Therefore, for these cases, the values of 7ng, were not estimated

experimentally and they were assumed to be equal to 7y

3.4 Results

The plots of temperature versus time for Case 1 for all fuels under
consideration calculated using the described model and obtained in the experiment
(reproduced from Deprédurand et al, 2010) are shown in Figs. 3.2-3.7. The values of
parameters shown in Table 3.1 were used in calculations. The calculations were
performed ignoring the interaction between droplets (indicated by subscript is,) and
taking them into account, based on the values of ng, and 1y, given in Table 3.1.
Time in all figures is measured from the moment of injection.

The calculations started at the time when the droplets were first observed
near the entrance to the chamber. The observed temperatures and radii of these
droplets were used as the initial temperatures and radii in the model. It was assumed

that initially there was no temperature gradient inside droplets.
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Fig. 3.2 The plots of the time evolution of the experimentally observed temperatures
of acetone droplets for Case 1, and temperatures at the surface of these droplets (75),
average temperatures in the droplets (7},,) and the temperatures at the centre of the
droplets (7,), predicted by the models ignoring the interactions between droplets
(indicated by the subscript is,), and taking into account these interactions. The input
parameters of the models were taken from Table 3.1.
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As follows from Figs. 3.2-3.7, the plots referring to interacting and non-
interacting (isolated) droplets are noticeably different for all substances. Similarly,
the plots referring to the temperatures at the centres of the droplets, average
temperatures, and the temperatures at the surfaces of the droplets are well separated.
This result is similar to the one reported by Maqua et al (2008a), and it shows the
limitation of the assumption, which is widely used in CFD codes, that the gradient of

temperature inside droplets can be ignored.
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Fig. 3.3 The same as Fig. 3.2 but for n-heptane droplets.

The observed temperatures of acetone droplets, shown in Fig. 3.2, look rather
different from the ones predicted by the model. Note, however, that the difference
between the average temperature, predicted by the model, taking into account the
interaction between droplets (T,,), and the experimentally observed temperatures is
always less than 1 °C, and can be naturally attributed to the uncertainty of the

measurements, and uncertainties of the input parameters used in calculations.
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Fig. 3.4 The same as Fig. 3.2 but for n-dodecane droplets.

In the case of n-heptane and n-dodecane droplets shown in Figs. 3.3 and 3.4,
the closeness between the experimentally observed temperatures and T,, was the
most visible, compared with other droplets. However, even in this case, the actual
deviation between these temperatures sometimes exceeds 1 °C. This means that the
model cannot predict the observed average droplet temperatures with errors less than
about 1 °C. For both of these substances, the experimentally observed temperatures
always lie between the temperatures T and T, , predicted by the model, taking into
account the interaction between droplets.

In the case of ethanol droplets shown in Fig. 3.5, the experimentally observed
temperatures were closer to the ones predicted by the model, taking into account the
interaction between droplets, than the ones ignoring this interaction. However, the
deviation between the experimental points and T, for these droplets (up to about 3

°C) was larger than in the case of acetone, n-heptane and n-dodecane droplets.
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Fig. 3.5 The same as Fig. 3.2 but for ethanol droplets.
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Fig. 3.6 The same as Fig. 3.2 but for 3-pentanone droplets.
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Fig. 3.7 The same as Fig. 3.2 but for n-decane droplets.

The temperatures for 3-pentanone and n-decane shown in Figs. 3.6 and 3.7
were generally similar to those for ethanol, with the maximal deviation between the
experimental points and Ty, about 3 °C for 3-pentanone and about 6 °C for n-decane.

The plots of normalised droplet radii R;/R , versus time for Case 1 for all
six substances, calculated using the described model and obtained in the experiment,
are shown in Figs. 3.8 and 3.9. The initial values of droplet radii were taken to be
equal to those for the droplets for which the first measurements of droplet
temperature were taken. When calculating the time evolution of R;, both droplet
evaporation and thermal expansion were taken into account based on Eq. (3.2). The
values of parameters used for these calculations are given in Table 3.1. Note that in
contrast to Deprédurand et al (2010), the plots of the ratios of radii rather than the
ratios of radii squared are presented. The latter would have been justified if the
analysis had been focused on droplet evaporation beyond the heat-up period, when

the d?-law is valid. In our case, the focus is on the heat-up period itself.
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Fig. 3.8 The plots of the time evolution of the experimentally observed (symbols)
and modelled (curves) normalised droplet radii R/R4 for acetone, ethanol and 3-
pentanone droplets for Case 1. Models ignoring the interactions between droplets
(indicated by the subscript i), and taking into account these interactions, were used.
The input parameters of the models were taken from Table 3.1.
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Fig. 3.9 The same as Fig. 3.8 but for n-heptane, n-decane and n-dodecane droplets.

As follows from Figs. 3.8 and 3.9, the effects of interaction between droplets

lead to a decrease in the rate of reduction of their radii in the case of acetone,

42



Chapter 3: Monodisperse mono-component fuel droplets heating and evaporation

ethanol, 3-pentanone and n-heptane, but to a slowing down of the increase of these
radii in the case of n-decane and n-dodecane in agreement with Castanet et al (2005).
In the latter case, the effect of the thermal expansion of droplets dominates over the
effects of evaporation. In the case of ethanol, 3-pentanone, n-heptane and n-decane
the agreement between experimental plots and predictions of the model, taking into
account the interaction between droplets, looks almost ideal. However, for acetone
and n-dodecane the experimental data lie between the predictions of the models
ignoring the interaction between droplets and taking them into account. Even in the
case of these two substances, the deviation between the experimental results and the
predictions of the model, taking into account the interaction between droplets, does

not exceed about 2%.
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Fig. 3.10 The plots of the time evolution of the experimentally observed droplet
temperatures T,y - Ty, where Ty are the initial droplet temperatures and the average
temperatures of droplets T,,, predicted by the model taking into account the
interaction between droplets. The results for acetone, ethanol, 3-pentanone, n-
heptane, n-decane and n-dodecane droplets for Case 2 are shown. The input
parameters of the models were taken from Table 3.1.

For the results referring to Cases 2 and 3, the analysis is restricted to
comparison of the experimental data with the average temperatures and Ry /R
predicted by the model taking into account the interaction between droplets, as was

done by Deprédurand et al (2010). Instead of the actual droplet average temperatures
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T,y, studied for Case 1, the analysis for Cases 2 and 3 is focused on the difference
between these temperatures and the initial droplet temperatures 7y. The
corresponding plots for T,, - Ty versus time for Case 2 for all six substances are
shown in Fig. 3.10. As follows from this figure, although the trends predicted by the
model are similar to the ones observed experimentally, there are noticeable
deviations between the actual values of predicted and observed average droplet
temperatures. The maximal deviation between them is seen for n-decane and n-

dodecane droplets. The minimal deviation between them is seen for 3-pentanone

droplets.
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Fig. 3.11 The same as Fig. 3.10 but for R4/R .

The plots of R; /R4 versus time for Case 2 for the same substances as in Fig.
3.10, are shown in Fig. 3.11. As one can see from this figure, the trends predicted by
the model are similar to the ones observed experimentally, but there are noticeable
deviations between the observed and predicted values of this ratio, as in the case of
Fig. 3.10. The maximal deviation between these ratios (up to almost 2%) is seen for
acetone droplets. The minimal deviation between these ratios is seen for 3-pentanone
droplets. Hence, for Case 2 the best agreement between experimental and modelled

results for both temperatures and radii is observed for 3-pentanone droplets.
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Fig. 3.12 The same as Fig. 3.10 but for Case 3, except without the results for 3-
pentanone.
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Fig. 3.13 The same as Fig. 3.12 but for R4/R .
The plots for T,, -Tp versus time for Case 3 for acetone, ethanol, n-heptane,

n-decane and n-dodecane (there is no data for 3-pentanone for Case 3) are shown in

Fig. 3.12. As one can see from this figure, the agreement between experimental and
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modelled results is very good for acetone, while the deviation between the
experimentally observed temperatures and those predicted by the model could reach
more than about 5 °C for ethanol and n-dodecane (although the observed and
predicted trends for both substances are the same). The plots of R,/Ry versus time
for Case 3 for the same substances as in Fig. 3.12 are shown in Fig. 3.13. As can be
seen from this figure, the best agreement between experimental and modelled results
can be seen for n-decane and n-heptane, and the worst for acetone and n-dodecane.
However, even in the case of acetone and n-dodecane, both experimental and
modelled results show the same trends and the deviation between them does not

exceed 2%.

3.5 Conclusions of Chapter 3

Heating and evaporation of monodisperse acetone, ethanol, 3-pentanone, n-
heptane, n-decane and n-dodecane droplets in ambient air at fixed temperature and
atmospheric pressure have been studied numerically and validated against available
experimental results. Droplet initial diameters varied from 99 to 135 pym, while
ambient air temperatures varied from 634 to 647 K. The numerical model took into
account the finite thermal conductivity of droplets and recirculation inside them
based on the Effective Thermal Conductivity model and the analytical solution to the
heat conduction equation inside droplets. The initial values of droplet temperatures
and radii were assumed to be equal to those observed experimentally for the first
recorded droplet. It was assumed that initially there was no temperature gradient
inside droplets.

It is pointed out that the interactions between droplets lead to noticeable
reduction of their heating in the case of ethanol, 3-pentanone, n-heptane, n-decane
and n-dodecane droplets, and reduction of their cooling in the case of acetone. The
interaction between droplets leads to a decrease in the rate of reduction of their radii
in the case of acetone, ethanol, 3-pentanone and n-heptane, but to a slowing down of
the increase of these radii in the case of n-decane and n-dodecane. In the latter case,
the effect of the thermal expansion of droplets dominates over the effects of
evaporation.

Although the trends of experimentally observed droplet temperatures and
radii are the same as predicted by the model, taking into account the interaction

between droplets, the values of the predicted droplet temperatures can differ from the
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observed ones by up to about 8 °C, and the actual values of the predicted droplet
radii can differ from the observed ones by up to about 2%. Combining the above
results and those reported previously by Maqua et al (2008a), it could be concluded
that the ETC model, based on the analytical solution to the heat conduction equation
inside droplets, can predict the observed average temperature of droplets with
possible errors not exceeding several °C, and observed droplet radii with possible
errors not exceeding 2% in most cases. These results confirm the previous
conclusions of Sazhin et al (2005a,b; 2006) that this model can be recommended for
implementation into CFD codes and used for multidimensional modelling of spray

heating and evaporation based on these codes.
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4 A simplified model for bi-component droplet heating and

evaporation

4.1 Introduction

The focus of this chapter is on the extension of the model developed by Sazhin
et al (2004; 2005a), described in Chapters 2 and 3, for mono-component droplets to
the case of multi-component droplets. At this stage only the simplest case of bi-
component droplets is considered, as in (Klingsporn and Renz, 1994; Lage et al,
1995; Maqua et al, 2008b), which allows developing a better understanding of the
underlying physics of the processes involved. The new model is much simpler than
the previously suggested models (Maqua et al, 2008b) which make it potentially
attractive for implementation into CFD codes. The new model is based on the
assumption that the droplet radius remains constant during each timestep. The
predictions of the model are compared with the available experimental data (the
measured time evolution of droplet temperatures in monodisperse bi-component
(ethanol/acetone) droplet streams reproduced from Maqua et al, 2008b). The new
model is based on the analytical solutions to heat conduction and species diffusion
equations within the droplet. These analytical solutions are then incorporated into a
numerical code. The results based on the analytical solutions to the above-mentioned
equations will be compared with the results based on the numerical solutions to these
equations.

Sazhin et al (2010a; 2011d) and Mitchell et al (2011) showed that the
assumption of constant droplet radius during the timestep is not at first borne out and
can lead to noticeable deviations from the results predicted by the models, taking
into account this effect. In the current chapter, the new simplified model will be
generalised to take into account this effect. The results will be compared with those
predicted by the model ignoring this effect. Finally a sensitivity study of the results
with respect to the choice of the correlation for the gas binary diffusion coefficient
will be investigated. The analysis will be focused on bi-component droplets, but the
results can be easily generalised to the case of multi-component droplets (Discrete
Component model).

The basic equations and approximations of the new simplified model are

described in Section 4.2. The experimental set-up (used for validation of our new

48



Chapter 4: A simplified model for bi-component droplet heating and evaporation

models) for measurements of droplet temperatures in monodisperse bi-component
(ethanol/acetone) droplet streams is briefly described in Section 4.3. In Section 4.4,
some results of the numerical solutions to the basic equations for the values of
parameters relevant to the experimental set-up described in Section 4.3 are
presented. In Section 4.5 the results, based on the analytical and numerical solutions
to the equations of heat transfer and species diffusion inside droplets, are compared
for experimental conditions described in Section 4.3. In Section 4.6 the results,
taking and not taking into account the effects of the moving boundary, predicted by
the model based on the analytical solutions to the equations of heat transfer and
species diffusion inside droplets, are compared for the values of parameters relevant
to experimental set-up described in Section 4.3 and other related conditions. The
effect of the choice of the binary diffusion coefficient correlation on droplet heating
and evaporation for experimental conditions described in Section 4.3 is discussed in

Section 4.7. The main results of this chapter are summarised in Section 4.8.

4.2 Basic equations and approximations

The model developed in this chapter is based on the equations describing liquid
phase heating and evaporation, species diffusion in the liquid phase and species mass
fractions at the surface of the droplets. These equations and their approximations and

analytical solutions, where appropriate, are presented and discussed below.

4.2.1 Droplet heating

The process of heating (or cooling) for stationary spherically-symmetric
multi-component droplets is the same as in the case of mono-component droplets
(Sazhin et al, 2004), described in Chapters 2 and 3, where the temperature of the
droplet T =T(t,R) can be calculated from Eq. (2.23). This model is equally
applicable to mono-component and multi-component droplets. The physical
properties of multi-component droplets are calculated as described in Appendix C.

The physical properties of acetone and ethanol are described in Appendix B.

4.2.2 Droplet evaporation
In the case of multi-component droplets the problem of modelling droplet
evaporation is complicated by the fact that different species diffuse at different rates,

and the evaporation rate of one of the species is affected by the evaporation rate of

49



Chapter 4: A simplified model for bi-component droplet heating and evaporation

other species. In Deprédurand et al (2010), the analysis of evaporation of multi-

component droplets led to the following expression for m, (total evaporation rate):

mg = _ZanDviprMi ShiSO(i)’ “4.1)
where By; is the species Spalding mass transfer number defined as:
Yois—Yvico
Bui === (4.2)

where D,; is the diffusion coefficient of species i in air, Shis() is defined by (2.30)
replacing By by By; and D, by D,; and €; is the evaporation rate of species i defined
by Eq. (4.7). As follows from Eq. (4.7) one can see that By = By;. Hence, for
stationary droplets this leads to the paradox that the same value of m, is predicted
by Eq. (4.1) for different D,;. This paradox is resolved by the fact that although Eq.
(4.1) is correct, the value of Shis;) cannot be approximated by the analogue of Eq.
(2.30) which is implicitly based on the assumption that the evaporating species do
not affect each other.

The analysis of m; = ¢;my(my = Y,;m;) in this chapter is based on Eq.
(3.5), assuming that the mixture of vapour species can be treated as a separate gas,
similar to treating the mixture of nitrogen, oxygen and carbon dioxide as air (Y,,; =
Y.i Yuis). The value of D, is estimated as described in Section 4.4.4 based on the so-
called Wilke-Lee formula (Eq. (4.33)).

The calculations of Shjs, and Nujy, are based on Egs. (2.30) and (2.31)
respectively. The corrections to Shis, and Nujs, due to the finite distance between
droplets are calculated as (Castanet et al, 2007; Maqua et al, 2008b; Deprédurand et
al, 2010):

_Sh _ Nu _ . _ 1—exp[—0.13(C-6)]
n= Shiso  Nujso 1-057 (1 1+exp[—o.13(c—6)])’ 4.3)

where C is the distance parameter. Note that, there is a typo in this equation at
Maqua et al (2008b). For the mixtures under consideration, the values of C are

presented in Table 4.1.

4.2.3 Species diffusion in the liquid phase
Assuming that the processes inside droplets are spherically-symmetric (no
recirculation), equations for mass fractions of liquid species Y;; = Y;;(t, R) can be

presented in the following form (Sirignano, 1983; Sazhin, 2006):

aYy; _ (62Y” 2 OY”)
at D orz TR o) (4.4)
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where i = 1,2 (refers to all species), D; is the liquid mass diffusivity. It is calculated
as described in Appendix C.

Eq. (4.4) is solved for the following boundary condition (Sirignano, 1983;
Sazhin, 2006):

ale; — Yys) = =Dy — ReRcs’ 4.5)
—Rg—

and the initial condition Y;; (t=0) = Y;;0(R), where Yj;; = Y};(¢) are liquid components’

mass fractions at the droplet surface,

|rgl

= |Rag| - (4.6)

"~ anmpR3
Assuming that species concentrations in the ambient gas are equal to zero,
the values of €; can be found from the following relation (Faeth, 1983; Continillo

and Sirignano, 1991):

Yyis
ei - Ziyvis, (47)

where the subscript v indicates the vapour phase. ¢€; is assumed to be constant and
determined by the values of Y,; at the beginning of the timestep. The conditions
€; = const. and a = const. can always be guaranteed for sufficiently small timesteps.

As in the case of Eq. (2.21), we are interested only in a solution which is
continuously differentiable twice in the whole domain. This implies that Y;; should
be bounded for 0 < R < R,;. Moreover, the physical meaning of Yj;, as the mass
fraction, implies that 0 <Y, < 1.

Eq. (4.4) with boundary condition (4.5) has essentially the same structure as
Eq. (2.21) with boundary condition (2.22). The former equations can be obtained
from the latter by replacing T with Yy;, k with Dy, T, with €;, T, with Y;; and k/h with
-Dj/a. However, although Eq. (4.4) looks rather similar to Eq. (2.21), the solution of
Eq. (2.21) (see Expression (2.23)) cannot be used for (4.4). The reason for this is that
solution (2.23) is valid only for sy > -1. At the same time the boundary condition for
Eq. (4.4) at R = R, (see Eq. (4.5)) leads to the situation in which Ay < -1. The solution
of Eq. (4.4) is given in Appendix D.

The average mass fraction of species in a moving droplet can still be
correctly predicted by Eq. (4.4), with appropriate boundary condition (4.5), if the
liquid diffusivity D; is replaced with the so-called effective diffusivity Degr, Sirignano
(1999):

Degr = Xy D1, (4.8)
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where the coefficient yy varies from 1 (at droplet mass diffusion Peclet number Pe,
= Rey)Sc a< 10) to 2.72 (at Pegy) > 500) and can be approximated as:
xy = 1.86 + 0.86tanh|2.225log;o(Re () Scaqy/30)]. (4.9)

where Scq) = % is the liquid Schmidt number, v; is the liquid kinematic viscosity
l

and Reg(qy is the same as discussed in Chapter 3 (Section 3.2.1).

Eq. (4.8) allows the application of solution to Eq. (4.4) to the case of moving
droplets by replacing D; with D.g, assuming that o = const. Following Sirignano
(1999), this model is called the Effective Diffusivity ‘ED’ model. As in the case of
the ETC model, this model cannot describe the details of species mass fractions
inside droplets, including vortex structures in the moving droplets, but this
information is not required in most engineering applications. A more complex
approach based on the analysis of Hill vortices, based on Eq. (2.39), is discussed in a
number of publications including (Sirignano, 1999; Maqua et al, 2008b). The
contribution of fuel vapour to the transport properties of air and the effects of

droplets on air are ignored. The air properties are presented in Appendix B.

4.2.4 Species mass fractions at the surface of the droplets

To calculate the species mass evaporation rate m; and the values of the
evaporation rate of species €; based on Eq. (4.7), the values of Y,; need to be
calculated first. The latter depend on the partial pressure of species i in the vapour
state in the immediate vicinity of the droplet surface; Atkins and de Paula, (2002):

Pois = XiisYiDyis» (4.10)
where Xj;, is the molar fraction of the i species in the liquid near the droplet surface,
Duis 18 the partial vapour pressure of the i species in the case when Xj;; = 1, y; is the
activity coefficient.

In the limit when y; = 1, Eq. (4.10) describes Raoult’s law. A more accurate
approximation for y; for the ethanol/acetone mixture is described in Appendix E,
following (Maqua, 2007; Maqua et al, 2008b). This approximation will be used in
the analysis of this chapter. Remembering the Clausius—Clapeyron equation (Atkins

and de Paula, 2002), Eq. (4.10) can be re-written as:
LiM; 1 1
Pvis = XiisYiPamb€XP [R_u (T—bl - T_s)]’ (4.11)
where M; is the molar mass, Tj; is the boiling temperature of the i species, Pamp 18

the ambient pressure and L; is the latent heat of evaporation of species i. The values
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of L; for ethanol and acetone are calculated as described in Appendix B. When
deriving Eq. (4.11) it was taken into account that p,; is equal to the ambient pressure
when T = Tp,;.

Eq. (4.11) can be re-written for the molar fractions of species i in the vapour phase:

les - XllSyleXp [ (Tbl - i)] (4.12)

Ts

Eq. (4.11) is the generalisation of Eq. (3.6) to the case of multi-component droplets.

4.2.5 Moving boundary effects

The effect of the moving boundary, due to thermal expansion/contraction and
evaporation, on the solutions to Egs. (2.21) and (4.4) is taken into account based on
the analytical solutions to these equations assuming that the droplet radius is a linear

function of time during each timestep (Sazhin et al, 2010a):

Rd(t) = RdO(l + O(Rt), (413)
where the value of ap takes into account both effects of evaporation and thermal
swelling/contraction.

R
ag = R—;() (4.14)

where R, is calculated based on Eq. (3.2). For R;(t) defined by (4.13) the solution
to Eq. (2.21), subject to the correspondence boundary and initial conditions, can be

presented in the form, Sazhin et al (2010a):

T(R,b) =#d(t)exp - arRgoR” ZeRaol| |5, 04 () sin (2, R(t))+”°“) | @15)

4KR4(t) 1+hg R4 (t)

where k is the liquid thermal diffusivity as introduced in Eq. (2.21), A,, are the

positive solutions to Eq. (2.24) while the parameter hy is calculated as :

_ (hRa®Y) _ , _ Rg(DRq(D)
ho = (F£2) — 1 : (4.16)

2K

where R;(t) = R, for moving boundary condition and zero otherwise.

t po(t ) A2 1
@ (t) - Qn exp [_R R (t)] fTLMO(t) fn Az fo Zg( ) exp[ . ( -

arRgo \Rq(t)
ol @
Ho(8) = A(E)yRa () exp [“49822, @18)
A = MOORG(O. M) = Ty + 2 LRap. fo = — il
Il = (1 - 222 =214 1), @19
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G = ﬁf& Wo(r)va(r)dr, (4.20)

Wo(r) = R%ZrTo(erO) exp [Fa88a0 2] @.21)

We should notice the difference between the parameters hy, ||v,]|? and g,
introduced here and those introduced in Eq. (2.23). This solution was obtained under
the assumption that parameter h is a constant greater than -1 during the timestep. In
the general case of a time dependent h, the solution of the differential heat
conduction equation was reduced to the solution of the Volterra integral equation of
the second kind (Sazhin et al, 2010a).

For R;(t) defined by (4.13) the solution to Eq. (4.4), subject to the
correspondence boundary and initial conditions, can be presented in the form, Gusev

et al (2012):

. aRrRgo(RaoRq()-R?
Y(R t) = aELexp[ 4Dy 0\ ORd(t) )] RCSl{)Z [ aRr dOR2 [Zoo [ +
S +“R§d° S/Z(t) RJR4® €xp 4D;R4(t) n=114yn
fin bvo(0)] exp [~ 2225 sin(rA,) +
t .

T2 1lavo + frovo(0)] exp |- #0@] sinh (r4). (4.22)
where

1o 0 0”2/12 sinh 4, whenn =0

fYn = 7,12 fo fy(T)UYn(T)dT = 1 ) (423)
" oz Sin Ay whenn > 1

> <1 + - /12> whenn =0

Il =4, (424)
> (1 + hyo+/12) whenn > 1
yn = Wfo Wyo (1) vy, (r)dr, (4.25)
Wyo(T) = X021 Qyn Vyn (1), (4.26)
Vyn (1) = sin(rd,), vyo(r) = sinh (rd,)
i(Ra®)™?  TRUORa®)
pro(t) = — “AEO)_ oy [RaORIO] (4.27)
Ra(t) Rg(t)R4(t)
hyo = (-2 o )—1 - faed T (4.28)
Ao is the solution to the equation:
Acosh A + hygsinh 4 =0. (4.29)
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A countable set of positive solutions to this equation (positive eigenvalues)

are arranged in ascending order, as in the case of Solutions (2.23), (D.38) and (4.15).

4.2.6 Numerical solutions

We will use two solutions to heat transfer and species diffusion equations;
the one based on the analytical solutions to Egs. (2.21) and (4.4) and the other based
on the numerical solutions to these equations. These are referred to as Solutions A
and B respectively.

The Cranck-Nicholson method is used to solve numerically Egs. (2.21) and
(4.4). This classical approach has already been used in several papers, including
Abramzon and Sirgnano (1989) and Maqua et al (2008b), to describe the droplet
heating and the change of its composition.

In this chapter, the results of the numerical solutions are provided by Dr.
Guillaume Castanet. The timestep is set at 0.01 ms and the radius of the droplet is
divided into 200 elements of identical size, which appears to be sufficient to ensure a
good accuracy in the results. The dependence of liquid properties on temperature and
composition is taken into account while the gas properties are assumed to be the
same as air and they depend on temperature. At each timestep, the temperature and
the liquid mass fractions are calculated iteratively with updated values of the
physical properties and the iterations are stopped when:

|Ts,;(t + At) — Ty j_1(t + At)| < 0.01K, (4.30)

|ris j(t+At)—1ig j_q (t+AL))|
Thsrj(t+At)

< 0.01, (4.31)

where j refers to the ;™ iteration. Typically two or three iterations have been

sufficient to satisfy these conditions.

4.3 Experimental data and input parameters

The experimental results are reproduced from Maqua et al (2006; 2008b), in
what follows a brief description of the experimental set-up and input parameters used
in our calculations will be presented.

The experimental set-up used for validation of the model is the same as
described in Section 3.3. The two-colour laser-induced fluorescence technique,
previously used for the measurement of droplet temperatures, was further developed
to include the third colour band. This additional band is required for the analysis of

bi-component droplets (Maqua et al, 2006). In this new technique, droplets were
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seeded with a low concentration of a fluorescent dye and illuminated by laser beams
having a wavelength tuned on the absorption spectrum of the tracer. The
fluorescence signal was detected over specific spectral bands of emissions. The ratio
of the intensity of these bands depends on the temperature and, to a lesser extent, on
the droplet composition, while the fluorescence dependencies on tracer
concentration, probe volume dimensions, laser intensity and optical layout were
eliminated (Maqua et al, 2006). The probe volume (intersection between the laser
beams and the detection field of view) was about 150 x 150 x 1200 pum’. It was
larger than the droplet in order to provide a global excitation of the whole droplet
volume. The signal was averaged over the total time of droplet transit in the probe

volume (Magqua et al, 2006; 2008b).

13
A A experiment
A
——approximation
12 A
£
=
11 A
A
100 % acetone
1 O 1 I I 1 1 1
0 1 2 3 4 5 6 7

Time (ms)

Fig. 4.1 Experimentally observed velocities for pure acetone droplets (triangles)
approximated by Eq. (3.7).

The measured time evolution of the droplet velocities for pure acetone is shown
in Fig. 4.1. In the same figure, the linear approximation (Eq. (3.7)) of the
experimental results is shown. Similar plots were obtained for pure ethanol and
various mixtures of acetone and ethanol (shown in Appendix F). In all cases the
linear approximations of the experimental results, similar to the one shown in Fig.

4.1, were used. These are summarised in Table 4.1.
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Substance u u, C T,(°C) | T;(°C) | Dyq (um)
(m/s) (m/(s.ms))

100 % acetone 12.81 0.316 7.1 21.5 34.8 143.4
100 % ethanol 12.30 0.344 7.1 22.0 38.0 140.8

25 % ethanol + 75 % | 12.75 0.370 8.7 21.1 32.8 133.8
acetone

50 % ethanol + 50 % | 12.71 0.448 7.53 | 20.8 37.5 142.7
acetone

75 % ethanol + 25 % | 12.28 0.306 753 | 21.6 38.6 137.1
acetone

Table 4.1 The values of uy, u,, C, T,, Ty and Dy for five different initial mass
fractions of acetone and ethanol droplet. The droplet velocities in m/s are
approximated as Eq. (3.7) where 7 is in ms.

4.4 Results

This section is divided into four parts. The first one shows the results of
Solution A with the stationary boundary (Egs. (2.23) and (D.38)). The second one
shows the results of Solutions A and B with the stationary boundary. The third one
shows the results of Solution A with the moving boundary (Egs. (4.15) and (4.22)).
The fourth one shows the effects of the binary diffusion coefficient on the time

evolution of droplet temperature.

4.4.1 Solution A based on stationary boundary

The plots of the time dependence of the temperatures for pure acetone and
ethanol are shown in Figs. 4.2 and 4.3 respectively. The experimentally observed
average droplet temperatures are shown by filled triangles in these figures. The
results of calculations are shown by purple, red and blue curves referring to the
central, average and surface temperatures. The calculations started with the first
observed droplets approximately 1 ms after the start of injection. At the earlier times,
the liquid fuel formed an unstable jet the temperature evolution of which cannot be
interpreted using the model under consideration. Also, it is assumed that there is no
temperature gradient inside droplets at the initial moment of time as in calculations

in Chapter 3.
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Fig. 4.2 The time evolution of droplet surface, average and centre temperatures (7,
T,y, and T,) and experimentally observed temperatures for pure acetone droplets with
initial diameter 143.4 um and homogeneous temperature 34.8 °C in an ambient gas
at temperature equal to 21.5 °C.
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Fig. 4.3 The same as Fig. 4.2 but for pure ethanol droplets with initial diameter 140.8
um, homogeneous temperature 38.0 °C and ambient gas temperature equal to 22.0
°C.
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As follows from Figs. 4.2 and 4.3, all three temperatures are well separated
for both acetone and ethanol. Hence, the difference between them needs to be taken
into account in the analysis of experimental data. In the case of acetone there seems
to be a reasonable agreement between the values of average temperature of the
droplets and experimental data. Data on the time evolution of droplet radii were not
available. Note that the Effective Thermal Conductivity and Effective Diffusivity
models, on which the analysis of this chapter is based, are primarily designed to
predict correctly the average surface temperature and species mass fractions of
droplets, but not their average temperature and species mass fractions.

In the case of pure ethanol shown in Fig. 4.3, the experimentally observed
temperatures lie below the surface temperature predicted by the model. Note that the
temperature scale in Fig. 4.3 is much finer than in Fig. 4.2. Hence, the overall
agreement between experimental data and predictions of the model looks reasonably
good. This level of agreement between the model and experimental data is similar to
the one reported by Maqua et al (2008b) for the case of the vortex model (see their
Fig. 7). Hence, the application of the new simplified model can be justified in this
case. Note that despite the overall agreement between the results of modelling and
experimental data, the observed rate of temperature decrease at the later times is
lower than predicted by the model.

Plots similar to those shown in Figs. 4.2 and 4.3, but for the mixtures of
ethanol and acetone, are presented in Figs. 4.4-4.6. The calculations were performed
for the cases of the ideal mixture (y; = 1 in Egs. (4.10) and (4.11)) and the non-ideal
mixture (y; in Egs. (4.10) and (4.11)) was calculated based on Eq. (E.3)). As can be
seen from these figures, in all cases the predictions of the temperatures by the ideal
and non-ideal models are noticeably different (by up to several degrees), especially
at later times. However, both these models predict about the same trend in the
evolution of temperature with time. The ideal model can be used if the prediction

errors of several degrees can be tolerated.
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Fig. 4.4 The same as Figs. 4.2 and 4.3 but for the 25% ethanol-75% acetone mixture
droplets with initial diameter 133.8 um, homogeneous temperature 32.8 °C and
ambient gas temperature equal to 21.1 °C. The results of calculations based on the
ideal (y; = 1) and non-ideal models are presented.
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Fig. 4.5 The same as Fig. 4.4 but for the 50% ethanol-50% acetone mixture droplets
with initial diameter 142.7 um, homogeneous temperature 37.5 °C and ambient gas
temperature equal to 20.8 °C.
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In Fig. 4.4 (25% ethanol - 75% acetone; the case of acetone dominated
mixture), the agreement between the observed and predicted average droplet
temperatures, for both ideal and non-ideal models, is reasonably good, although the
scatter of experimental data in this case is more noticeable than in the case of pure
acetone shown in Fig. 4.2.

In Fig. 4.5 (the case of the 50% ethanol - 50% acetone mixture), the
experimentally observed temperatures lie between the average and surface
temperatures predicted by both ideal and non-ideal models. These temperatures are
closer to the average temperatures predicted by the non-ideal model than to those

predicted by the ideal model.
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— — T,, (non-ideal)
— — T, (non-ideal)
15 T 1 1 1 1 1
0 1 2 3 4 5 6 7

Time (ms)
Fig. 4.6 The same as Figs. 4.4 and 4.5 but for the 75% ethanol-25% acetone mixture
droplets with initial diameter 137.1 um, homogeneous temperatures 38.6 °C and
ambient gas temperature equal to 21.6 °C.

In Fig. 4.6 (the case of the 75% ethanol - 25% acetone mixture), the
experimentally observed temperatures lie well below the average temperatures
predicted by both ideal and non-ideal models, although they are closer to the average
temperatures predicted by the non-ideal model than to those predicted by the ideal
model, as in the case of the 50% ethanol - 50% acetone mixture shown in Fig. 4.5.
The reason for this deviation between the measured and predicted temperatures,

which could reach up to 5 °C, is not clear.
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Fig. 4.7 The same as Fig. 4.6 but including additional results of calculations of T
and T,y (based on the vortex model, as reported in Maqua et al, 2008b) instead of the
results referring to 7.

In Fig. 4.7 the predictions of the new simplified model and the predictions of
the vortex model, reported in Maqua et al (2008b) are compared. As one can see
from this figure, the experimental results agree better with the predictions of the
average temperature by the vortex model than by the new simplified model. It seems,
however, that this was achieved by the choice of the lower initial droplet temperature
in the vortex model (which could be used as a fitting parameter). If the values of this
temperature were taken to be the same, one would expect that the predictions of the
simplified and vortex models would be very close.

The plots of time evolution of droplet radius for the same mixture as in the
case of Figs. 4.6 and 4.7, inferred from the new simplified model and the numerical
results reported in Maqua et al (2008b), are shown in Fig. 4.8. As follows from this
figure, the vortex model predicts a slightly lower evaporation rate than the simplified
model. In both cases, the non-ideal model predicts higher evaporation rate than the

ideal one.

62



Chapter 4: A simplified model for bi-component droplet heating and evaporation

68.8
75% ethanol + 25% acetone
68.4 A
~ 68 7
=
=
o 67.6 A
: — — new model (non-ideal)
— — new model (ideal)
67.2 1 numerical results by Maqua et al (2008b) (non-ideal) T
——— numerical results by Maqua et al (2008b) (ideal)
66.8 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Time (ms)

Fig. 4.8 The plots of R, versus time predicted by the ideal (y; = 1) and non-ideal,
simplified and vortex models for the same droplets as in Figs. 4.6 and 4.7.

The plots of temperature distribution inside droplets at various moments of
time after the start of calculations for the 75% ethanol — 25% acetone mixture for the
same conditions as in Figs. 4.6-4.8 are shown in Fig. 4.9. The values of central and
surface temperatures inferred from this figure are the same as shown in Fig. 4.6.
Note that at times greater than about 2 ms, the distribution of temperature inside
droplets is close to parabolic. This could justify the application of the so-called
parabolic model to take into account the gradient of temperature inside droplets
(Dombrovsky and Sazhin, 2003a,b). Note that these plots do not describe the actual
distribution of temperature inside the moving droplets, as they are based on the ETC
model. Only the temperatures near the surface of the droplets have physical meaning.
The plots of temperature distribution inside droplets for other mixtures turned out to

be rather similar to the ones shown in Fig. 4.9.
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Fig. 4.9 The plots of T versus R/R; for six moments of time after the start of
calculations for the same droplets as in Figs. 4.6-4.8.
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Fig. 4.10 The plots of the ethanol mass fraction Y., versus R/R; for six moments of
time after the start of calculations for the same droplets as in Figs. 4.6-4.9.

The plots of the distribution of mass fraction of ethanol inside droplets for the
same mixture as shown in Fig. 4.9 at various moments of time after the start of
calculations are shown in Fig. 4.10. As expected, the mass fraction of ethanol near
the surface of the droplet increases with time. This is related to the dominant acetone

evaporation due to its high volatility. The distribution of mass fraction of ethanol
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presented in this figure clearly indicates that the models, based on the assumptions of
zero or infinitely large diffusivities inside droplets, are not applicable in this
particular case. Note that these plots do not describe the actual distribution of mass
fraction inside the moving droplets, as they are based on the ED model. Only the
mass fractions near the surface of the droplets have physical meaning. The radial
distribution of the ethanol mass fraction shown in Fig. 4.10 is expected to predict the
trends of this distribution but not its quantitative characteristics. The plots of ethanol
mass fraction distribution inside droplets for other mixtures showed the same trends

as Fig. 4.10.

4.4.2 Solutions A and B (stationary boundary)

In the previous section the value of the distance parameter C was assumed to
be constant and equal to its initial value. The analysis of this part takes into account
the changes in C from the previous to the current timestep based on the following

equation:

_ Ugnew Rdold
Cnew - Cold u R > (4-32)
d,old ""dnew

where subscripts ,ew and oq refer to the values of variables at the previous timestep

and one timestep behind respectively. In this case the values of Ry 14 and R pew are

known at the current timestep.

9
8 _
O 7 A
——100% acetone
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5 T T T T T T
0 1 2 3 4 5 6 7

Time (ms)
Fig. 4.11 The time evolution of the distance parameter for acetone and ethanol

droplets and their mixtures, calculated based on the parameters in Table 4.1 and Eq.
(4.32).
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The plots of C versus time for all cases shown in Table 4.1 are presented in
Fig. 4.11. As can be seen from this figure, the changes in C during the experiments
are noticeable in all cases and cannot be ignored.

In the previous sections of this chapter the Reynolds number for liquid droplet
‘Rey()” was calculated as in Chapter 3, where Au = |ug - ud| is the relative
velocity between ambient gas and droplets, which is a crude assumption. Following
Abramzon and Sirgnano (1989) it is calculated here based on the maximum surface

velocity ug introduced by Eq. (2.15).
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Fig. 4.12 The time evolution of the parameter y; for pure acetone and ethanol,
calculated based on parameters in Table 4.1 and Eq. (2.14), and the assumption that
ugy = Au (curves 1) and Eq. (2.15) (curves 2).

The values of correction factor of thermal conductivity ‘y;’ predicted based on
a crude assumption that ug = Au (curve 1) and Eq. (2.15) (curve 2) for acetone and
ethanol are shown in Fig. 4.12. As one can see from this figure, for both acetone and
ethanol the predicted values of y; based on these approximations differ by less than
0.5% which can be safely ignored in most practical engineering applications. The
plots, based on the assumption that ug; = Au for acetone and ethanol, coincide within
the accuracy of plotting.

The main focus of this section is the comparison of the results of calculations

based on the analytical solutions to the equations for heat transfer and species
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diffusion inside droplets (Egs. (2.21) and (4.4)) (Solution A), and those based on the
numerical solutions to these equations (Solution B). The effects of the movement of
the droplet surface due to evaporation and thermal swelling/contraction during

individual timesteps are ignored.
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Fig. 4.13 The same as Fig. 4.2 but for both of Solutions A and B. The distance
parameter is calculated based on Eq. 4.32.

The plots of the time dependence of the temperatures for pure acetone and
ethanol, obtained based on Solutions A and B, are shown in Figs. 4.13 and 4.14
respectively. The experimentally observed average droplet temperatures are shown
by filled triangles in these figures. As follows from these figures, all three
temperatures are well separated for both acetone and ethanol. Hence, the difference
between them needs to be taken into account in the analysis of experimental data.
The results predicted by Solutions A and B coincide within the accuracy of plotting,

which gives us confidence in the results predicted by both solutions.
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Fig. 4.14 The same as Fig. 4.13 but for pure ethanol droplets.

In the case of acetone (see Fig. 4.13), the observed temperature values lie
close to the average temperatures. In the case of ethanol (see Fig. 4.14), the observed
temperatures are close to or below the surface temperature of the droplets. Hence, for
both acetone and ethanol, the trends of predicted temperatures agree with
experimental observations, but there is a rather poor agreement between the values
of observed and predicted temperatures for both acetone and ethanol, in agreement
with results shown in Figs. 4.2 and 4.3, as the measured temperatures are expected to
be the volume-averaged droplet temperatures with systematically more weighting in
the zones near the centres of the droplet (see Section 4.3). The reason for this lack of

quantitative agreement is not clear to us.
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Fig. 4.15 The same as Fig. 4.4 predicted by Solution A, but with variable C, for ideal
and non-ideal models and experimentally observed temperatures (a); the same as (a),
predicted by Solutions A and B for the non-ideal model (b).
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Fig. 4.16 The same as Fig. 4.15 but for the 50% ethanol — 50% acetone mixture
droplets.

Plots similar to those shown in Figs. 4.13 and 4.14, but for mixtures of
ethanol and acetone, are presented in Figs. 4.15-4.17. The calculations were
performed for cases of the ideal mixture (y; = 1 in Eq. (4.10)) and the non-ideal
mixture (y; in Eq. (4.10) is calculated by Eq. (E.3)). As can be seen from these
figures, in all cases the predictions of the temperatures by the ideal and non-ideal

models are noticeably different (by up to several degrees), especially at later times.
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However, both these models predict about the same trend in the evolution of
temperature with time. The ideal model can be used if the prediction errors of several
degrees can be tolerated. This seems to be our case where the random errors of the
estimates of droplet temperatures appear to be about 2-3 degrees. As in the cases
shown in Figs. 4.13 and 4.14, the results predicted by Solutions A and B coincide
within the accuracy of plotting, which gives us confidence in the results predicted by
both solutions.

In the case of an acetone dominated mixture (25% ethanol — 75% acetone: see
Fig. 4.15), the agreement between the observed and predicted average droplet
temperatures, for both ideal and non-ideal models, is reasonably good. Most of the
observed temperatures lie between average and central temperatures, although the
scatter of experimental data in this case is more noticeable than for pure acetone (see
Fig. 4.13).

In the case of the 50% ethanol- 50% acetone mixture (see Fig. 4.16), the
experimentally observed temperatures lie close to the average temperatures predicted
by the non-ideal model. For the 75% ethanol — 25% acetone mixture (see Fig. 4.17),
the experimentally observed temperatures are close to the surface temperatures
predicted by the non-ideal model. As with pure acetone and ethanol, the reason for

this deviation between the measured and predicted temperatures is not clear to us.
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Fig. 4.17 The same as Figs. 4.15 and 4.16 but for the 75% ethanol — 25% acetone
mixture droplets.
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4.4.3 Solution A based on moving boundary

As mentioned in the Introduction, in a number of papers (Sazhin et al, 2010a;
2011d; Mitchell et al, 2011) it was shown that the assumption that the droplet radius
is fixed during the timestep can lead to noticeable deviations from the results
predicted by the models which take into account the changes of this radius during the
timesteps. The cases tested in the above-mentioned papers refer to droplet heating
and evaporation in a hot gas and the moving boundary was linked only with droplet
evaporation. The effects of thermal swelling/contraction were ignored in these
papers. Also, only mono-component droplets were considered, in which case the
moving boundary only had an effect on the heat conduction equation inside droplets.
In this section the effect of the moving boundary on both heat transfer and species
diffusion equations will be taken into account based on Egs. (4.15) and (4.22). The
model will first be applied to the case of droplets considered in Section 4.3. Then
other related cases will be considered.

The plots of time evolutions of the temperatures at the centre and the surface
of the droplets and the average droplet temperatures, predicted by the models not
taking into account the effect of the moving boundary and taking into account this
effect for both temperature and species diffusion for the 25% ethanol — 75% acetone
and 50% ethanol — 50% acetone mixture droplets, are shown in Fig. 4.18. As can be
seen from this figure, the effect of the moving boundary on the predicted
temperatures can be safely ignored in the analysis of experimental data described in
Section 4.3. The same conclusion can be drawn for the case of the 75% ethanol —

25% acetone mixture droplets.
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Fig. 4.18 The time evolution of droplet surface, average and centre temperatures (75,
T,y and T,), predicted by Solution A for the non-ideal model, taking and not taking
into account the effects of moving boundary during individual timesteps (moving
and stationary boundaries) on the solutions to both heat transfer and species
diffusion equations for the 25% ethanol — 75% acetone mixture droplets with the
values of the initial parameters, droplet velocity and gas temperature given in Table
4.1 (a); the same as (a) but for the 50% ethanol — 50% acetone mixture droplets (b).
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In Fig. 4.19 a hypothetical case is shown when the 50% ethanol — 50%
acetone mixture droplets are cooled down or heated and evaporated until complete
evaporation takes place. Both plots for the droplet surface temperature and droplet
radius are shown. The same values as shown in Table 4.1 for the initial droplet
temperature, diameter, distance parameter and gas temperature are used, but in
contrast to the case shown in Table 4.1, it is assumed that the droplet velocity
remains constant and equal to 12.71 m/s. The cases of the stationary boundary during
individual timesteps, the cases when the effects of the moving boundary are taken
into account for the heat transfer and species diffusion equations separately during
individual timesteps, and the case when these effects are simultaneously taken into

account for heat transfer and species diffusion are shown.

50
50% ethanol + 50% acetone (Solution A, non-ideal model) | 70
40 —— stationary boundary for temperature and species
— moving boundary for temperature only - 60
moving boundary for species only
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Fig. 4.19 The time evolution of droplet surface temperatures (7;) and radius (Ry),
predicted by Solution A for the non-ideal model, taking and not taking into account
the effects of moving boundary during individual timesteps on the solutions to the
heat transfer equation only, species diffusion equation only and both heat transfer
and species diffusion equations for the 50% ethanol — 50% acetone mixture droplets
with the values of the initial parameters, and gas temperature given in Table 4.1,
assuming that the droplet velocity is constant and equal to 12.71 m/s.
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As can be seen from Fig. 4.19, the plots taking into account the effects of the
moving boundary on the heat transfer equation only, and ignoring this effect
altogether practically coincide. That means that this effect can be safely ignored for
this case. Also, the plots taking into account the effects of the moving boundary on
the solution to the species diffusion equation, and taking it into account for both
solutions to the heat transfer and species diffusion equations practically coincide, but
the difference between both these curves and the ones ignoring this effect altogether
can be clearly seen after about 0.1 s. The effect of the moving boundary is a
reduction of the predicted droplet surface temperature between about 0.1 to 0.6 s.
During this period the droplet surface temperature is below the ambient gas
temperature. Hence the reduction of the droplet surface temperature is expected to
increase the heat flux from the ambient gas to the droplets, leading to the
acceleration of droplet evaporation. This agrees with the predicted time evolution of
the droplet radius, taking and not taking into account the effect of the moving

boundary, shown in Fig. 4.19.

60
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—— moving boundary for temperature and species
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0 10 20 30 40 50 60 70 80

Time (ms)
Fig. 4.20 The same as Fig. 4.19 but for gas temperature equal to 1000 K.
In Fig. 4.20 the case similar to the one shown in Fig. 4.19, but for gas
temperature equal to 1000 K, is shown. In this case, droplet surface temperature
increases during the whole period of droplet heating and evaporation, in contrast to

the case shown in Fig. 4.19. As one can see from Fig. 4.20, the plots taking into
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account the effects of the moving boundary on the solution to the heat transfer
equation, and ignoring this effect altogether practically coincide, as in the case
shown in Fig. 4.19. Also, similarly to the case shown in Fig. 4.19, the plots taking
into account the effects of the moving boundary on the solution to the species
diffusion equations, and taking it into account for both heat transfer and species
diffusion equations practically coincide, but the difference between both these curves
and the ones ignoring this effect altogether can be clearly seen after about 5 ms. This
difference between the plots is much more visible than in the case shown in Fig.
4.19. As in the case shown in Fig. 4.19, the effect of the moving boundary is to
reduce the predicted droplet surface temperature leading to the increase of the heat
flux from the ambient gas to the droplets and acceleration of droplet evaporation.
This agrees with the predicted time evolution of droplet radius, taking and not taking

into account the effect of the moving boundary, shown in Fig. 4.20.
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Fig. 4.21 The same as Fig. 4.20 but for the mass fraction of ethanol at the surface of
the droplet.

The plots of time evolution of the surface mass fraction of ethanol Y ¢ for the
same case as shown in Fig. 4.20, are shown in Fig. 4.21. Similarly to the case shown
in Fig. 4.20, the main effect of the moving boundary on the solution to the species

diffusion equation is its influence on the values of Y;,.n. This effect leads to visible
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reductions of the values of Y;;.n until the complete evaporation of the droplet takes

place.

4.4.4 Effects of the binary diffusion coefficient

One would expect that the deviation between the predictions of the models and
experimental data can be attributed not only to the accuracy of the models and
experimental data, but also to the accuracy of the input parameters in the models. As
shown before in Sazhin et al (2006), one of the crucial parameters which is expected
to affect the predicted time evolution of droplet temperature and radius is the binary
diffusion coefficient of fuel vapour in air. The Wilke-Lee formula (Poling et al,
2000) for this diffusion coefficient was used in the previous sections of this chapter:

_ [3.03-(0.98/Mm3% )| 107773/

v *
PMyL2 62, 0p (T*)

, (4.33)
where D, is in mz/s, T is temperature in K,

-1
1 1
Moo =2(5+50)
M, and M, are molar masses of vapour and air respectively, p is in atm, o,, =
(0, + 0,)/2 is the minimal distance between molecules in Angstrom, j is the

collision integral defined by Eq. (A.2), the values of which depends on the
normalised temperature T* = kgT/€,,, kp is the Boltzmann constant, €, = @ .
The values of these parameters are shown in Table A.1. In the case of the mixture of
vapour components, all input parameters (molar masses and Lennard—Jones
parameters) are calculated as molar averaged, taking into account their relative molar
concentrations Xem/(Xet + Xacet) and Xacet/( Xeth + Xacet)-

In this section, the sensitivity of some results, reported in the previous sections,
with respect to the choice of the approximation for D, will be investigated. The
following approximations for D,,, alongside Eq. (4.33) have been chosen.

The Chapman-Enskog approximation, Giddings (1965):

2.63x1077T3/2

Do = S, @39
The Gilliland approximation, Gilliland (1934)
43x1077T3/2 [ 2
DU - p(Vv1/3+V;/3)Z M_‘l]ll, (435)

where V, and V, are molar volumes of vapour and air in cm’ respectively. They are

calculated as Polling et al (2000):
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3
Voo = (0,4/1.18)".
The Hirschfelder-Bird-Spotz approximation, Hirschfelder et al (1949):

1.86x10~7T73/2 , 2
Dv B pUEaQD(T*) Mva. (436)

The Fuller-Schettler-Giddings approximation, Fuller et al (1966):

D. — 1.43x1077TL75 2
v Vzp(E )3 +E a)3) | Mya’

(4.37)

where the diffusion volumes ) v and ), a are determined by summing the atomic
contributions for vapour and air as described in Table 11.1 of Poling et al (2000);
Ya=19.7cm?, ¥ eth = 51.77 cm’ and ¥ acet = 67.67 cm’.

The values of D, in Eqgs. (4.33)-(4.37) are in m/s; p is in atm and M,, is in
kg/kmole. Eqgs. (4.33)-(4.37) are reproduced from Polling et al (2000) and
Eslamloueyan and Khademi (2010).

The plots of D,, versus T, based on Egs. (4.33)-(4.37) for acetone and ethanol,
are shown in Fig. 4.22. As one can see from this figure, the values of D,,, predicted
by these formulae are noticeably different especially for ethanol at high
temperatures. Note that the predictions of Eq. (4.35) (Gilliland approximation) for
acetone and ethanol are almost identical, in contrast to predictions of other equations.
This is related to the fact that Eq. (4.35) does not contain o, while masses and
molar volumes of acetone and ethanol are about the same. At room temperatures,
relevant to the experiments described in Section 4.3, the values of D,,, predicted by
all approximations, except the one suggested by Chapman and Enskog for acetone
and Gilliland for ethanol, are rather close. The values of D, for the mixtures of
acetone and ethanol are expected to lie between those shown in Fig. 4.22. In the
following analysis we investigate how this relatively small difference in D,, affects

the predicted values of the average temperatures for pure acetone and ethanol.
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Fig. 4.22 The temperature dependence of the diffusion coefficient of acetone (a) and

ethanol (b) for the models described in Section 4.4.4.
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Fig. 4.23 The time evolution of droplet average temperatures (7,,), predicted by
Solution A, using the diffusion coefficients predicted by Egs. (4.33)-(4.37) and
shown in Fig. 4.22, and experimentally observed temperatures for pure acetone (a)
and ethanol (b) droplets with the values of the initial parameters, droplet velocity and
gas temperature given in Table 4.1.
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The plots of the time dependence of the droplet average temperatures for pure
acetone and ethanol, obtained based on Solution A, using Eqgs. (4.33)-(4.37) are
shown in Fig. 4.23. As before, experimentally observed average droplet temperatures
are shown by filled triangles. As one can see from this figure, the values of the
average temperatures predicted by all approximations turned out to be rather close.
Hence, the predictions of the model are not expected to be sensitive to the values of
D,. The same conclusion is expected for the mixtures of acetone and ethanol (the
plots are not shown).

Finally we check the validity of the parameter ¢, defined by Eq. (2.33) to

correlate the heat transfer number By with the mass transfer number By, based on the

assumption that

5L = 1, Sazhin et al (2006).

N

This is done by direct comparison between the values of T,,, predicted by the
Solution A, using the general equation of ¢ (Eq. (2.33)) and the simplified ¢ based
on the assumption that Sh'/Nu = 1. The results for pure acetone and ethanol are
shown in Fig. 4.24. The actual values of Sh'/Nu" for acetone and ethanol are also
shown in the same figure. As can be seen from this figure the values of Sh"/Nu" for
both acetone and ethanol are close to 1, while the values of T,,, predicted using both
formulae, practically coincide. We anticipate that the same coincidence takes place
for the mixtures of acetone and ethanol. This justifies our original assumption that

the value of ¢ can be estimated using the simplified ¢ based on the assumption that

Sh"/Nu” = 1.
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Fig. 4.24 The plots of the time evolution of Sh*/Nu* and Tav, predicted by Solution
A, Eq. (2.33) (dashed curves) and using parameter based on Sh*/Nu* = 1 (solid
curves) for pure acetone (a) and ethanol (b).

83



Chapter 4: A simplified model for bi-component droplet heating and evaporation

4.5 Conclusions of Chapter 4

A simplified model for bi-component droplet heating and evaporation is
suggested. This model takes into account droplet heating by convection from the
ambient gas, the distribution of temperature inside the droplet, diffusion of liquid
species inside the droplet, droplet swelling or contraction due to changing average
temperature, effects of the non-unity activity coefficient (ideal and non-ideal
models), the effects of the moving boundary and the effects of the interaction
between moving droplets due to the finite distance parameter. The effects of
recirculation in the moving droplets on heat and species diffusions within them are
taken into account using the ETC and ED models. The previously obtained analytical
solution to the transient heat conduction equation has been incorporated in the
numerical code alongside the original analytical solution to the species diffusion
equation inside droplets.

The predicted time evolutions of surface, average and central droplet
temperatures have been compared with the results of direct measurements of droplet
average temperatures for the case of various mixtures of ethanol and acetone. There
is a general agreement between the predicted and observed average temperatures in
the case of pure acetone and acetone-rich mixtures. In the case of ethanol, 50%
ethanol - 50% acetone and 75% ethanol - 25% acetone mixture droplets the predicted
average droplet temperature was several degrees (up to 5 °C) higher compared with
the observed one. It has been shown that the temperatures predicted by the simplified
model and the earlier reported vortex model were reasonably close. Also, the
temperatures predicted by the ideal and non-ideal models differ by not more than
several degrees. This can justify the application of the simplified model with the
activity coefficient equal to 1 for the interpretation of the time evolution of
temperatures measured with similar errors.

It is pointed out that the predictions of the models based on the analytical and
numerical solutions to the heat transfer and species diffusion equations inside
droplets are almost identical (both models are based on the assumption that the
location of the droplet surface is fixed during the timestep), which gives confidence
in both solutions.

It is pointed out that for the conditions of the experiment described in Section
4.3, the predictions of the models, taking and not taking into account the effects of

the moving boundary during the timestep on the solutions to the heat transfer and
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species diffusion equations are very close. The deviation between the predictions of
these models can be ignored in this case. At the same time, the difference in the
predictions of these models needs to be taken into account when the whole period of
droplet evaporation up to the complete evaporation of droplets is considered. The
effect of the moving boundary is shown to be much stronger for the solution to the
species diffusion equation than for the solution to the heat conduction equation
inside droplets.

The effect of the choice of the approximation of the diffusion coefficient for the
ethanol/acetone vapour in air is shown to be small for the conditions of the
experiment considered in this chapter, and can be ignored in most engineering

applications.
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S Coupled solution and code optimisation

5.1 Introduction

Although the simplified model for bi-component droplets heating and
evaporation, suggested in Chapter 4, was recommended for incorporation into CFD
codes, there are still a number of issues which need to be addressed. The original
model suggested in Chapter 4, took into account the effect of ambient gas on
droplets but ignored the effects of droplets on gas. Furthermore, the issue of
optimisation of the code was not addressed in Chapter 4. The choice of the number
of terms in the analytical solutions was based exclusively on the numerical values of
the ignored terms, without taking into account the computational cost. These two
issues will be addressed in this chapter. Also, the model suggested in Chapter 4 will
be generalised to arbitrary number of species and validated against experimental data
different from those used in Chapter 4. The new analytical solution to species
diffusion equation is the same as in Chapter 4 for stationary boundaries and it is
described at Appendix D. The analytical solution to heat transfer equation within the
droplet is the same as used in Chapters 3 and 4, originally developed by Sazhin et al
(2004). It is presented in Chapter 2.

Basic equations and approximations are briefly summarised in Section 5.2. Our
approach to the coupled solution and the numerical algorithm are described in
Sections 5.3 and 5.4 respectively. Section 5.5 is focused on the input parameters. The
results of calculations are compared with experimental data in Section 5.6. In Section
5.7, the accuracy of the model predictions versus the CPU efficiency of the code are

investigated. The main results of this chapter are summarised in Section 5.8.

5.2 Basic equations and approximations

Most basic equations and approximations used in the analysis of this chapter
are essentially the same as used in Chapters 2 and 3 for heat conduction equation
inside the droplet and the same as used in Chapter 4 for species diffusion equation
inside the droplet for the case of stationary boundaries. New equations, not used in
Chapter 3 or 4, are described below.

The values of Shjs, and Nujs, and are calculated based on Eqgs. (2.30) and (2.31)

respectively. In Chapter 3, the corrections to Shys, and Nu,, due to the finite distance
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between droplets were calculated based on the experimental results (see Table 3.1
and Section 3.3) while in Chapter 4, these corrections were calculated based on the
empirical correlation, which was the function of the distance parameter (see Eq.
(4.3)). However, as shown by Deprédurand et al (2010), this correlation does not
always work, mainly due to the fact that it does not account for fuel volatility which
influences the interaction between droplets.

Following Deprédurand et al (2010), we introduce the dimensionless time ¢

defined as:

=20 (5.1

Ur
where f is the frequency of droplet production (in Hz) (set up for each particular
experiment and directly linked with the distance parameter), § is the film thickness,
which is different for mass and thermal boundary layers (&), and &7), v, is the radial

velocity of the vapour released at the droplet surface estimated as:

mg

by = . (5:2)

where p,, is the density of vapour and m, is the total evaporation rate of the droplet
calculated based on Eq. (3.5). Parameter t* takes into account the contributions of
both the distance parameter (via f) and the volatility of fuel (via v,.).

The values for &, and 67 for mono-component droplets were estimated based

on the model suggested by Abramzon and Sirignano (1989):

2R

8y = F(Br) 5ot (53)
2R

8w = F(Bu) 3o, (5.4)

where F (B r) are the same as introduced in Egs. (2.28) and (2.29). Nuy, Shy are
Nusselt and Sherwood numbers for non-evaporating droplet respectively. They can
be defined following Abramzon and Sirignano (1989) as:
Nug = 1+ (1 + RePrg)/3f(Rey), (5.5)
Shy = 1 + (1 4+ RezScq) 3 f(Rey), (5.6)
where f(Re;) =1 at Rey < 1 and f(Rey) = Re%%77 at1 < Rey < 400. Rey, Pryg
are Reynolds and Prandtl numbers, based on the gas transport coefficients (Eq.

(2.26)).
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These definitions of &y, 67 and v, were generalised to the case of multi-
component droplets, via introduction of the average density and mass averaged
values of transport coefficients.

Having introduced the concept of t*, Deprédurand et al (2010) suggested the

. . Nu
following correlations for ny, = o for acetone, ethanol, 3-pentanone, n-decane,
iso
Sh

n-dodecane and n-heptane, and 7g, = S for ethanol, 3-pentanone and n-heptane

hiso
(nsy, for acetone was approximated by the same correlation as for 7yy):
Nu 1-0.155335

+ 0.155335, (5.7)

INu = Ny = (Tat6767¢+1)0535026

_ Sh 1-0.155335
Nsh = Shiso,  (6.503406 x 10~7t*+1)54302:36

+ 0.155335. (5.8)

Although Eqgs. (5.7) and (5.8) were derived for a limited number of substances;
it can be assumed that they are valid for a wider range of substances and their
mixtures. They will be applied to the analysis of droplets of the mixture of n-decane

and 3-pentanone.

5.3 The coupled solution

The model, described in the previous chapter, could be generalised to take into
account the effects of droplets on gas and then incorporated into any CFD code (e.g.
KIVA by Amsden et al, 1987). This analysis, however, is beyond the scope of this
chapter. Instead, a simplified model, capturing the essential features of coupling
between droplets and ambient gas will be described with a view to a specific
application to the analysis of the experimental data, similar to those described by
Maqua et al (2008a,b) and Deprédurand et al (2010) (Sections 3.3 and 4.3). In these
experiments, ambient gas pressure remained the same and equal to the atmospheric
pressure. Let us assume that the droplet exchanges heat and mass with a certain
volume V,, surrounding it. Following Tonini et al (2008), we call it the region of
influence. The shape of this region can be either spherical, in the case of isolated
droplets, or cylindrical, in the case of droplets stream, considered by Maqua et al
(2008a,b) and Deprédurand et al (2010). In both cases, the cross-section of this
region in the arbitrary direction for the spherical region and the cross-section
perpendicular to the axis of the cylinder is schematically shown in Fig. 5.1. For the
spherical and cylindrical regions, their volumes can be estimated based on the
following equations:

4

V, =5m(R3 — R3) (5.9)

88



Chapter 5: Coupled solution and code optimisation

and
4
V; = mRid — SmRj] (5.10)
respectively, where d is the distance between droplets. The choice of R, will be

discussed in Section 5.3.3.

Fig.5.1 Schematic diagram for the spherical region of influence or the plane
perpendicular to the cylinder axis for the cylindrical region of influence.

This model will be applied to the analysis of the experiments by Deprédurand
et al (2010), where the droplets’ velocities were determined from the experiments
and not calculated. Hence, the momentum transfer between the region of influence
and the droplets is not considered in the model.

This region of influence is assumed to be large enough to allow us to ignore
heat exchange between it and the ambient gas, and escape of fuel vapour from this

region to the ambient gas. Let’s first focus on the mass transfer process.

5.3.1 Mass balance
The total number of moles of gas inside volume V, can be obtained from the

ideal gas law:

PatmV,
Neotal = 57> (5.11)

where R, is the universal gas constant. Initially, there is no vapour in V, and Nyt =
N, (number of moles of air) at 7' = Ty. Once the evaporation process has started then
a certain number of moles of vapour N, = »:X_, N,;, where N is the total number of

species, penetrates into volume V,. Simultaneously the temperature changes from the
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initial temperature Ty to 77. The number of moles of air in this case reduces (or

increases if 7 is sufficiently lower than 7)) to:

PatmV,
Neotal = -t~ Zica Nt (5.12)

Thus the mass fraction of vapour inside the cell can be estimated as:

N
Zi=1 MyiNy;
Z?’:1 MyiNyi+MgNg ’

Yv(cell) = (5.13)

where M, is the molar mass of air, M,; are molar masses of vapour species. We
assume that Yo, = Yy (cenn). In the one-way solution, described in Chapters 3 and 4, it

was assumed that Y,,, = 0. When deriving Egs. (5.12) and (5.13) it was assumed
that fuel vapour cannot escape from volume V,, which is justified if this volume is
large enough, and the duration of the process is short (At < Rf, /D, where D, is the
diffusion coefficient for vapour, described by Wilke-Lee Formula Eq. (4.33)). For
sufficiently small timesteps, we can assume that 7 = Ty in Eq. (5.12) and updated at
the next timestep.

The calculation continues until Y, ey = Yys. Once this happens, the droplet
stops evaporating (By = 0). Apart from Yy cenr), Eqs. (5.12) and (5.13) are used for

calculation of physical properties of the mixture of vapour and air.

5.3.2 Heat balance
Assuming that gas temperature inside volume V, is homogeneous, the time

evolution of this temperature can be described by the equation:

% = —2mk,NuRy(T, — T), (5.14)
where myg is the total mass of gas (mixture of air and vapour) in volume Vg, Nu is the
Nusselt number for evaporating droplets (taking into account the heating/cooling of
the vapour).

Eq. (5.14) was solved at each timestep. The value of m, in this equation is the
mass of the mixture of air and fuel vapour as calculated at the previous timestep. The
values of k, and c,, were calculated for the mixture of air and fuel vapour as
described in Appendix C. The physical meaning of Eq. (5.14) is obvious: this is the
mathematical expression of the statement that the energy lost by the gas is spent on

droplet heating and evaporation. Possible effects of gas temperature gradients near

the droplet surface were considered by Sazhin et al (2007).
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5.3.3 Size of the region of influence

In CFD codes the results of calculations should not depend on the cell sizes for
sufficiently small cells, since the ordinary differential equations in individual cells
are solved alongside partial differential equations describing mass, momentum and
energy transfer between cells. Although this is true in the case of the Eulerian
approach, the results usually start depending on the grid size for sufficiently small
cells in the case of the Lagrangian/Eulerian approach widely used for spray
simulation. This problem was extensively discussed by Tonini et al (2008), where
the concept of the region of influence was first introduced. The main idea of this
concept is to allow droplets to exchange mass, momentum and energy not only with
gas in a cell, in which a droplet is located, but with gas in a wider a priori
determined region (region of influence). Essentially the same idea is used in this
chapter. The size of this region is considered as a free parameter, within a certain
range, which can be adjusted to get the best fit with experimental data. In the case of
very large Vg, the coupled solution reduces to the one-way solution. For small Vg, an
unphysical solution can be obtained, since in this case the interaction of gas in Vg and
the surrounding air, ignored in our analysis, can play the dominant role.

We assume that R can be approximately estimated as:

R, = Ry + Jkptp, (5.15)

where t,is the characteristic duration of the process,

k; = max (k—g,D,,>, (5.16)

‘pgPg
where the first term in the latter equation describes the heat diffusivity in volume Vg,
while the second term describes diffusion coefficient of the fuel vapour in the gas
inside the region of influence. Since Rg is considered as a fitting parameter in our
model, we ignore its possible increase during the experiments (displacement of

droplets away from the nozzle).

5.4 Numerical algorithm

The numerical scheme outlined below is specifically focused on the
application of the model for interpretation of the experimental results similar to those
reported by Maqua et al (2008a,b) and Deprédurand et al (2010). In the experiments
reported in these papers ambient pressure was constant. The time evolution of

droplet velocities was directly measured and these were used as input parameters of
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the model at each timestep. In contrast to Chapters 3 and 4, the effects of droplets on

the gas phase were taken into account (coupled solution). These are the main steps of

the numerical algorithm:

1.

Assume the initial distribution of temperature and mass fractions of species
inside the droplet or use the distributions obtained at the previous timestep
(the initial distributions of both were assumed homogeneous). Recalculate

the mass fractions of species into molar fractions of species.

Calculate the values of liquid thermal conductivity and effective thermal
conductivity of the droplet. Use the values of the droplet velocities from the

experimental data.

Calculate species partial pressures and molar fractions in the gas phase from

Raoult’s law (Egs. (4.11) and (4.12)).

Calculate maximum of the thermal and mass diffusivities; calculate R,
according Eq. (5.15) with #p = 12 ms (typical transit time of droplets). This
step is applied to the first timestep only.

Calculate the interaction volume based on Eq. (5.9) for the spherical volume
and Eq. (5.10) for the cylindrical volume. Calculate the concentration of

vapour of all species in the region of influence.

Calculate the values of heat capacity (Appendices B and C), diffusivity of the
mixture of vapour species in the air (Eq. (4.33)), species evaporation rates €;

based on Eq. (4.7) and the value of the Spalding mass transfer number based

on Eq. (4.2).

Calculate the values of Sherwood and Nusselt numbers for isolated droplets

Shiso, Nuiso based on Egs. (2.30) and (2.31) respectively.

Calculate the values of Nusselt and Sherwood numbers for droplets, taking

into account the interaction between them (Eqgs. (5.7) and (5.8)).
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9.

10.

11.

12.

13.

14.

15.

Calculate the total change of mass of the evaporating droplet during the
timestep At, taking into account the interaction between droplets and the

change in liquid density (Eq. (3.5)).

Calculate the rate of change of droplet radius based on Eq. (3.2).

Calculate the distribution of temperature inside the droplet based on Eq.

(2.23).

Calculate the distribution of species inside the droplet based on Eq. (D. 38).

Recalculate the droplet’s radius at the end of the timestep At. In our analysis
the droplets never fully evaporated, but the program was designed to deal
with the case when the complete evaporation takes place, if necessary. If this
radius is negative then the timestep is reduced and the calculations are
repeated. If the ratio of this radius to the initial radius is less than an a priori
chosen small number &5 = 107, then the remaining part of the droplet is
assumed to be evaporated with all liquid species transferred into the gas
phase with the corresponding decrease in gas temperature. If this ratio is

greater than 107° then go to the next step.

Recalculate the distributions of temperature and species for the new radius
(e.g. T(R) = T(RR»/Ry1) = T(R), where Rg1 > are droplet radii at the beginning
and the end of the timestep, R is the new R used at the second timestep, T are

the values of temperature at the end of the timestep).

Return to Step 1 and repeat the calculations for the next timestep.

5.5 Input parameters

The experimental set-up used for validation of the model is the same as

described in Chapters 3 and 4. Three sets of experimental data referring to the
mixtures of decane and 3-pentanone will be used in this chapter analysis. These are
95% decane — 5% 3-pentanone, 90% decane — 10% 3-pentanone and 85% decane —

15% 3-pentanone mixture droplets, which will be referred to as Cases 1, 2 and 3
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respectively. Droplet initial diameters, temperatures, ambient temperatures, distance
parameters, injection frequencies and the experimentally observed time evolutions of

droplet velocities for these cases are presented in Table 5.1.

Case 1 Case 2 Case 3
Parameter 95% n-decane — | 90% n-decane — 85% n-decane —
5% 3-pentanone | 10% 3-pentanone | 15% 3-pentanone
Initial diameter 122.7 pm 126.1 pym 127.7 pum
Initial temperature 28.66 °C 25.6°C 26.3 °C
Ambient temperature | 370 °C 374 °C 374 °C
Distance parameter 3.78 3.84 3.8
Injection frequency 20600 Hz 20600 Hz 20500 Hz
uq, Eq. 3.7) 8.51 (m/s) 10.35 (m/s) 10.0 (m/s)
u,, Eq. 3.7) 0.174 (m/(s.ms)) | 0.278 (m/(s.ms)) 0.209 (m/(s.ms))

Table 5.1 Droplet initial diameters, temperatures, ambient temperatures, distance
parameters, injection frequencies and the droplet velocities in m/s are approximated
by Eq. (3.7) where ¢ is in ms, for the 95% n-decane — 5% 3-pentanone mixture
droplets (Case 1), 90% n-decane — 10% 3-pentanone mixture droplets (Case 2) and
85% n-decane — 15% 3-pentanone mixture droplets (Case 3); Deprédurand (2009).

5.6 Results

A crucial parameter which needs to be considered in the coupled solution is the
volume of gas where the interaction between droplets and gas is taken into account,
or even more important the ratio of this volume and the volume of the droplet
r =V, /V4. For spherical and cylindrical cells these volumes are linked with
parameter R, via Egs. (5.9) and (5.10) respectively. A crude estimate of this
parameter is given by Eq. (5.15). Taking f#p in this equation equal to 12 ms
(characteristic transit time of droplets), R; = 61.35 um (see Table 5.1), d = 463.806
um (based on the distance parameter equal to 3.78 (see Table 5.1), and estimating kp
as 3.61 x 107 m%/s, R, = 7.2004 x 10™* m =~ 720 um is obtained. This gives r ~
1615 for the spherical cell, and r = 780 for the cylindrical one. The latter is more
appropriate for the experimental results considered in this chapter. Remembering
that this estimate was made for the maximal 75, and is rather crude by its nature, the
actual value of this parameter could be taken a bit less than 780 in the coupled

solution, but not too small to affect the assumptions of the model.
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The calculations were performed for r =V, /Vy = 600 (coupled solution) and r =
5%10* (it was shown that for this r the results predicted by the coupled solution are
indistinguishable from the results predicted by the one-way solution, described in
Chapters 3 and 4). The choice of the ratio r will be investigated in Section 5.7.
Twenty terms in the series in the analytical solutions to temperature and species
equations were used in the calculations (the sensitivity of the results with respect to
the choice of the number of terms will be investigated in Section 5.7). As in Chapters
3 and 4, in both cases the temperatures at the centre of the droplets, the surface of the
droplets and the average droplet temperatures were calculated. The values of ambient
gas temperature and droplet velocities were the input parameters of the model. Note
that although the ambient gas temperature remained constant during each
experiment, in the case of the coupled solution gas temperature inside the volume V,
was allowed to change with time, although no temperature gradients were allowed to
develop in this volume. As in Chapters 3 and 4, the calculations started at the
moment when droplets were first observed. The initial droplet temperatures were
assumed equal to the measured temperatures of the first observed droplets.

The timestep in the calculations was taken equal to 107 s, and the number of
points along the radius inside droplets, where the temperatures were stored, was
taken equal to 2000. The latter number controls the accuracy of the calculation of the
spatial derivatives of the temperature and species mass fractions, used in boundary
conditions for 7 and Yj; (see Egs. (2.22) and (4.5)). The reason for this choice of the
timestep and the number of points will be discussed later in Section 5.7.

The plots of time evolutions of the temperatures at the centre of the droplets, the
surface of the droplets and the average droplet temperatures, predicted by the
coupled and one-way solutions for the 95% n-decane — 5% 3-pentanone mixture
droplets (Case 1), are shown in Fig. 5.2. As follows from this figure, all three
temperatures under consideration are well separated, as in the cases, considered in
Chapters 3 and 4. Also, the coupled solutions show visibly slower rates of droplet
heating, compared with the predictions of the one-way solution. All experimental
plots lie between the average droplet temperature and the temperature at the centre of

the droplet predicted by the coupled solution.
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Fig. 5.2 The time evolution of the droplet surface, average and central temperatures
(Ts, T,y and T,.), as predicted by the coupled and one-way solutions, and
experimentally observed temperatures for the 95% n-decane — 5% 3-pentanone
mixture droplets with initial diameters 122.7 ym and homogeneous temperature
28.66 °C injected into an ambient gas at constant temperature equal to 370 °C (see
Table 5.1). Zero time corresponds to the start of injection.

The plots similar to those shown in Fig. 5.2 but for the 90% n-decane — 10%
3-pentanone mixture droplets (Case 2) and the 85% n-decane — 15% 3-pentanone
mixture droplets (Case 3) are shown in Figs. 5.3 and 5.4 respectively. The trends of
all curves in these figures are rather similar to those shown in Fig. 5.2. In both cases
experimental plots lie between the average droplet temperature and the temperature
at the centre of the droplet predicted by the coupled solution, as in the case shown in
Fig. 5.2, except three experimental points in Fig. 5.4. Even in the latter case,
however, the deviation between the predicted temperatures at the centre of the
droplet and the ones obtained experimentally is well within the experimental error.
In all three cases, the one-way solution predicts unrealistically high average droplet
temperatures, well above those observed experimentally. Hence, the effects of
coupling need to be taken into account for the accurate prediction of droplet

temperatures.
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Fig. 5.3 The same as Fig. 5.2 but for the 90% n-decane — 10% 3-pentanone mixture
droplets with initial diameters 126.1 um, homogeneous temperature 25.6 °C injected
into an ambient gas at constant temperature equal to 374 °C (see Table 5.1).

60

55

50

45

40

Temperature (°C)

35

30

25

experiment

S

av

@

av

S8R A

o

coupled solution
coupled solution
coupled solution
oneway solution
oneway solution
oneway solution

85% n-decane + 15% 3-pentanone

8 9 10 11

Time (ms)

12

Fig. 5.4 The same as Figs. 5.2 and 5.3 but for the 85% n-decane 15% 3-pentanone
mixture droplets with initial diameters 127.7 um, homogeneous temperature 26.3 °C
injected into an ambient gas at constant temperature equal to 374 °C (see Table 5.1).

The plots of time evolutions of the gas temperatures in the region of

influence for all three cases, as predicted by the coupled solution, are shown in Fig.

5.5. In the case of the one-way solution, this temperature remained constant. As can
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be seen from Fig. 5.5, the drop in the gas temperature during droplet heating could
reach up to about 70 °C and this leads to a visible reduction of the rate of increase of
droplets temperatures predicted by the coupled solution. This drop in gas
temperature is expected to produce much stronger effect due to the coupled solution,

compared with the addition of fuel vapour to the region of influence.
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Fig. 5.5 The time evolution of gas temperature in the region of influence for three
mixtures of n-decane and 3-pentanone. The droplets and the ambient gas parameters
are the same as used in Figs. 5.2-5.4.

The plots similar to those shown in Figs. 5.2-5.4, but for droplet radii, are
shown in Figs. 5.6-5.8. As one can see from these figures, neither coupled solutions
nor one-way solutions can predict the observed trends in the time evolution of
droplet radii. At the same time, one can see from these figures that the deviation
between the predicted and observed droplet radii is less than about 0.5 xm in most
cases, which is within the margins of experimental errors. Hence, the deviations
between the predicted and observed droplet radii cannot undermine the validity of

the model.
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Fig. 5.6 The plots of R, versus time predicted by the one-way and coupled solutions
for the same conditions as in Fig. 5.2.
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Fig. 5.7 The plots of R, versus time predicted by the one-way and coupled solutions
for the same conditions as in Fig. 5.3.
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Fig. 5.8 The plots of R, versus time predicted by the one-way and coupled solutions
for the same conditions as in Fig. 5.4.

Four sets of plots are presented below, which cannot be validated against

experimental data at the moment, but show the underlying physics of the processes

involved.
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Fig. 5.9 The plots of T versus R/R; for three moments of time after the start of
calculations predicted by the one-way and coupled solutions and for the same
conditions as in Fig. 5.2.
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The temperature distribution inside the 95% decane — 5% 3-pentanone mixture
droplets (Case 1) at three moments of time, as predicted by the coupled and one-way
solutions, is presented in Fig. 5.9. As can be seen from this figure, at all times the
temperature increases with the distance from the centre of the droplets, as expected.
The temperature gradient is less important for case predicted by the coupled solution
compared with the one-way solution. The deviation between the temperatures in all

areas of the droplets, predicted by the coupled and one-way solutions, increases with

time.
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—— coupled solution t= 8 ms
2 09510 - —— coupled solution t= 10 ms
i‘f e One-way solution t= 6 ms
> —— one-way solution t= 8 ms
0.9505 A —— one-way solution t= 10 ms
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Fig. 5.10 The plots of the n-decane mass fraction Y, gecane Versus R/R; for three
moments of time after the start of calculations predicted by the one-way and coupled
solutions and for the same conditions as in Fig. 5.2.

Plots similar to those shown in Fig. 5.9, but for the mass fraction of n-decane,
are presented in Fig. 5.10. As can be seen from this figure, the mass fraction of n-
decane in the areas close to the surface of the droplet, predicted by the coupled and
on-way solutions, increases with time. This is related to higher volatility of 3-
pentanone, compared with n-decane. As in the case of temperature, shown in Fig.
5.9, the rate of increase of the mass fraction of n-decane, predicted by the coupled
solution, is slower than the one predicted by the one-way solution. The deviation
between the results predicted by these solutions increases with time. This can be

related to the fact that in the coupled solution, vapour in the region of influence is
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partially saturated and the temperature in this region is lower than that in the

surrounding gas.
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Fig. 5.11 The plots of the evaporated masses of n-decane, 3-pentanone and the total
evaporated mass versus time predicted by the coupled solution for the same
conditions as in Fig. 5.2.

The time evolution of evaporated masses of 3-pentanone, n-decane and the
total vapour mass in the region of influence is shown in Fig. 5.11. As one can see
from this figure, evaporated masses of both substances increase with time. This can
be related to the fact that no condensation takes place during the period under
consideration, and to the assumption that no vapour escapes from the region of
influence into ambient gas. The predicted mass of n-decane is always greater than
that of 3-pentanone, despite higher volatility of 3-pentanone, compared with n-
decane (cf. Fig. 5.10). This is related to the fact that the original amount of n-decane
in droplets is 20 times more than the amount of 3-pentanone.

The time evolution of masses of air and the total mass of the mixture of air
and vapour in the region of influence is shown in Fig. 5.12. The increase of the mass
of air with time is related to the decrease of temperature in the interaction volume
with time (cf. Fig. 5.5) at constant pressure. Note that for a fixed temperature, part of

air should have been removed from the interaction volume by the evaporating fuel
(see Eq. (5.12)).
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Fig. 5.12 The plots of the total mass of air and the mixture of air and vapour in the

region of influence versus time predicted by the coupled solution for the same
conditions as in Fig. 5.2.

The plots of time evolutions of the temperatures at the centre of the droplets,
at the surface of the droplets and the average droplet temperatures, predicted by the
coupled and one-way solutions for the 25% ethanol — 75% acetone mixture droplets,
are shown in Fig. 5.13. The initial value of the ratio r =V, /V,; was chosen to be
3500 in the case of ethanol/acetone mixture to ensure complete evaporation process
if it is considered. Also, the coupled solutions show a slightly faster drop in
temperature at the beginning of evaporation and a slower reduction at later times.
This behaviour is different from the one described in Figs. 5.2-5.4 for the case of
droplet heating in a hot gas. In that case, the coupled solution predicted visibly
slower rates of droplet heating, compared with the predictions of the one-way
solution. Most experimental plots lie between the average droplet temperature and
the temperature at the centre of the droplet predicted by the coupled solution. The
agreement between the predicted and experimental results looks marginally better for

the coupled than for the one-way solution.
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Fig. 5.13 The time evolution of droplet surface, average and centre temperatures (7},
T,y and T,), predicted by Solution A for the non-ideal model, coupled and one-way
solutions and experimentally observed temperatures for the 25% ethanol — 75%
acetone mixture droplets. The initial parameters are the same as in Fig. 4.15.
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Fig. 5.14 The same as Fig. 5.13 but for 50% ethanol — 50% acetone mixture droplets.

The initial parameters are the same as in Fig. 4.16.
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Fig. 5.15 The same as Figs. 5.13 and 5.14 but for 75% ethanol — 25% acetone
mixture droplets. The initial parameters are the same as in Fig. 4.17.

Plots similar to those shown in Fig. 5.13, but for the 50% ethanol — 50%
acetone mixture droplets, are shown in Fig. 5.14. The effects of the coupled solution
on the trends are similar to those shown in Fig. 5.13. The experimentally observed
values of temperature lie close to the average temperatures predicted by both the
one-way and coupled solutions. The same plots as in Figs. 5.13 and 5.14, but for the
75% ethanol — 25% acetone mixture droplets, are shown in Fig. 5.15. The effects of
the coupled solution on the trends are similar to those shown in Figs. 5.13 and 5.14.
Note that in the case shown in Fig. 5.15, the deviation between the predicted and
observed temperature values is larger for the coupled than for the one-way solution.

The reason for this is not clear at the moment.

5.7 Accuracy versus CPU efficiency

In the analysis, reported in Chapters 3 and 4, we were concerned with the
accuracy of the results, and chose the maximum number of terms in the series in the
analytical solutions to temperature and species mass fractions. However,
remembering that perhaps the most important practical application of the model
described in Chapter 4 would be its potential implementation into CFD codes, and
application of the latter to simulation of realistic engineering processes, finding a

reasonable compromise between the accuracy of the model and its CPU efficiency
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becomes more important than its accuracy alone. The accuracy and CPU efficiency
of the model, depending on the number of terms in the series in the analytical
solutions to temperature and species mass fractions, are investigated in this section.
We focus on the analysis of the 95% decane — 5% 3-pentanone mixture droplets
(Case 1). The conclusions referring to other mixtures are essentially the same as the
ones for the above-mentioned mixture.

The relative errors were estimated based on the following equation:

i=i
(Zi=1max(|FN=1oo—FN=n|/FN=1oo))

lmax

%Error,, = , (5.17)

where F' stands for either temperature or mass fraction, N is the number of terms in
the series in the solution to the equation for temperature or mass fraction, i refers to
timesteps, iuq, 1S the maximal number of timesteps used in calculation (this number
varied from about 700 to about 800). The errors were calculated relative to the
values obtained when 100 terms in the expression for the temperature or mass
fraction of n-decane were used. Higher order terms did not produce any effects on
the results.

The plots of relative errors of the temperatures at the centre of the droplets
(T:), the surface of the droplets (75), the average droplet temperatures (7,y), predicted
by the coupled solution, and the CPU requirement versus the number of terms in the
series in the expression for droplet temperature (n) are presented in Fig. 5.16. 100
terms in the expression for the mass fraction of n-decane (Eq. D.38) were taken. All
temperatures were measured in °C. Calculations were performed on 3 GHz CPU, 3
GB RAM work station. As follows from this figure, the errors of calculating all
temperatures, are practically equal to zero when the number of terms 7 is close or
larger than 20. Hence, 20 terms were used in the analysis presented in Section 5.6.
The CPU time increased by about 50% when the number of terms in the expression
for temperature increased from 20 to 100. This increase of the number of terms,
however, does not lead to any increase in the accuracy of the results and cannot be
justified. Note that the errors of calculating average temperature are more than an
order of magnitude less than the errors of calculating droplet surface temperature and
the temperature at the centre of the droplet. This is related to the fact that for small
number of terms, small oscillations of temperature were observed near the centre of

the droplets and its surface. These oscillations reduce substantially during the
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integration along R performed for the calculation of the droplet average temperature,

Sazhin et al (2004).
E,, = R%foRd R2F(R)dR, (5.18)

where F stands for either temperature or mass fraction.
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Fig. 5.16 The plots of relative errors (in percent) of calculation of droplet surface,
average and central temperatures (7, T,y and 7)) and CPU time versus the number of
terms in the solution to the temperature equation with the fixed number of terms in
the solution to the species equation equal to 100 for the same conditions as in Fig.
5.2. Calculations were performed on 3 GHz CPU, 3 GB RAM work station.

Plots similar to those presented in Fig. 5.16, but for the mass fractions of n-
decane, are shown in Fig. 5.17. In contrast to Fig. 5.16, the number of terms in the
series in Eq. (D.38) varied, and the number of terms in the expression for the
temperature Eq. (2.23) was assumed to be equal to 100. As can be seen from this
figure, all errors of calculation of the mass fractions of n-decane are about two orders
of magnitude less than the errors of calculation of droplet temperatures. As in the
case of temperatures, the errors of calculating average mass fractions are more than
an order of magnitude less than the errors of calculating the mass fractions at the
surface and the centre of the droplets. The explanation of this phenomenon is the
same as for the droplet temperature (see Fig. 5.16). As in the case of temperature, the

errors in the case when the number of terms is about or more than 20, can be safely
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ignored. The increase of CPU time when the number of terms increased from 20 to
100, was even more noticeable than in the case of temperature (this time almost
doubled). As in the case of temperature, this increase in the number of terms could

not be justified from the point of view of increased accuracy of the model.
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Fig. 5.17 The plots of relative errors (in percent) of calculation of liquid n-decane
mass fractions at the surface of the droplet, average mass fraction of n-decane and its
mass fraction at the centre of the droplet (Y, Y,y and Y,.) and CPU time versus the
number of terms in the solution to the species equation with fixed number of terms in
the solution to the temperature equation equal to 100 for the same conditions as in
Fig. 5.2. Calculations were performed on 3 GHz CPU, 3 GB RAM work station.

Plots similar to those shown in Fig. 5.17, but referring to the case when the
numbers of terms in the series for temperature and mass fractions are equal, are
presented in Figs. 5.18 and 5.19. As can be seen from these figures, the errors of
estimating all mass fractions are less than about 0.02% even if the number of terms
in both series is reduced to just three. Note that the increase in the number of these
terms from five to twenty practically does not improve the accuracy of the prediction
of the model. As in the case shown in Fig. 5.17, the CPU time, in the case when
three terms are chosen, is more than an order of magnitude less than in the case when

a hundred terms is chosen in both series.
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Fig. 5.18 The plots of relative errors (in percent) of calculation of droplet surface,
average and central temperatures (7, T,y and 7,) and CPU time versus the number of
terms in the solutions to the temperature and species equations (these numbers are
assumed equal) for the same conditions as in Fig. 5.2. Calculations were performed
on 3 GHz CPU, 3 GB RAM work station.
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Fig. 5.19 The plots of relative errors (in percent) of calculation of liquid n-decane
mass fractions at the surface of the droplet, average mass fraction and the mass
fraction at the centre of the droplet (Y, Y,y and Y,) and CPU time versus the number
of terms in the solutions to the temperature and species equations (these numbers are
assumed equal) for the same conditions as in Fig. 5.2. Calculations were performed
on 3 GHz CPU, 3 GB RAM work station.
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Combining the results shown in Figs. 5.16-5.19, we can conclude that the
model can accurately predict the values of droplet temperature and mass fractions of
n-decane even if the number of terms in the series for temperature and mass fractions
is reduced to three. This result is consistent with the earlier finding reported by
Sazhin et al (2005b). Relatively low CPU time required for calculations makes this
model potentially attractive for implementation into CFD codes.

As mentioned earlier, all plots presented so far refer to the case when the
timestep was chosen equal to 107 s and the number of points along the radius, Ng,
equal to 2000. The increase in the timestep is expected to decrease the accuracy of
calculations as in any numerical code. In our case, however, the excessive reduction
of this timestep can also lead to decrease in the accuracy of calculations due to the
decrease in the Fourier numbers in the series in the analytical expressions for T and
Y;;. This decrease is expected to affect the convergence of these series. This effect is
illustrated in Fig. 5.20, where the plots of droplet surface temperatures versus Ny for
different timesteps are presented for the 95% n-decane — 5% 3-pentanone mixture
(Case 1) 5 ms after the start of calculations. As follows from this figure, the choice
of the timestep 10~ s leads to under-prediction of this temperature by more than 1 °C
for all Ng. For all timesteps in the range 10°° — 10™* s and N > 1500 the predicted
temperature remains almost the same. For smaller Ng, the accuracy of calculations
clearly deteriorates, especially for the timestep equal to 107 s. The plots, shown in
Fig. 5.20, are similar to those obtained for other cases and other moments of time.
Based on these plots, the values of the timestep 10~ s and Nz = 2000 have been
chosen. Note that the CPU time could be further reduced, practically without any
detrimental effects on accuracy, if the timestep is increased to 10™ s and Ny is

reduced to 1000.
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Fig. 5.20 The plots of the predicted droplet surface temperatures versus Ni for

different timesteps for the 95% n-decane — 5% 3-pentanone mixture (Case 1) at 5 ms
after the start of calculations.

The parameter r = V; /V,; was used as a fitting parameter to give the best fit
with the experimental data. The calculations, for decane/3-pentanone droplet
mixtures, were performed for r =V, /V; = 600 (Figs. 5.2-5.4) where the best
agreement with the experimental data for the three cases of mixtures under
consideration (coupled solution) was achieved. The one-way calculations were
performed for r = 5%10". For this r the results predicted by the coupled solution are
indistinguishable from the results predicted by the one-way solution, described in
Chapters 3 and 4. As can be seen from Fig. 5.21, if the value of r is increased above
5 x 10* the results do not change and if the value of r is below 600 no evaporation

can take place (saturation condition By, = 0).
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Fig. 5.21 The plots of average temperatures T,, with different r values indicated at
the curve versus time for the same conditions as in Fig. 5.2.

5.8 Conclusions of Chapter 5

The earlier reported simplified model for multi-component droplet heating and
evaporation, described in Chapter 4, is generalised to take into the coupling between
the droplets and the ambient gas. Similarly to the original simplified model, the
model described in this chapter takes into account droplet heating by convection
from the ambient gas, the distribution of temperature inside the droplet, diffusion of
liquid species inside the droplet, droplet swelling or contraction due to changing
average temperature and the effects of recirculation in the moving droplets on heat
and species mass diffusion within them. The effects of the non-unity activity
coefficient are ignored (Raoult’s law is assumed to be valid) and the interaction
between droplets is taken into account based on the correlation suggested by
Deprédurand et al (2010). The size of the gas volume, where the interaction between
droplets and gas needs to be taken into account (region of influence), is estimated
based on the characteristic thermal and mass diffusion scales. The model is applied
to the analysis of the experimentally observed heating and evaporation of
monodispersed n-decane/3-pentanone (Deprédurand et al, 2010) and ethanol/acetone
(Maqua et al, 2008b) mixture droplets at atmospheric pressure. For the case of

decane/3-pentanone mixture droplets (droplet heating), it is pointed out that the
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effect of coupling leads to noticeably better agreement between the predictions of the
model and the experimentally observed average droplet temperatures. In most cases,
the experimentally observed droplet temperatures lie between the average and central
temperatures, predicted by the coupled solution. The main effect of the coupled
solution is linked with the reduction of the gas temperature in the region of
influence. A deviation of up to about 0.5 um between the experimentally observed
and predicted droplet radii is related to the experimental margins. It is pointed out
that the observed time evolution of droplet radii cannot be used for the validation of
the model.

For the case of ethanol/acetone mixture droplets, at the initial stage of droplet
cooling and evaporation, the coupled solution predicts visibly lower droplet
temperatures, compared with the predictions of the one-way solution. At the later
stage of droplet cooling and evaporation, the coupled solution predicts higher droplet
temperatures, compared with the predictions of the one-way solution. In the case of
acetone dominated mixture droplets (25% ethanol — 75% acetone) the agreement
between the predicted and experimental results looks marginally better for the
coupled than for the one-way solution.

It is pointed out that the number of terms in the series in the expressions for
droplet temperature and species mass fraction can be reduced to just three, with
possible errors less than about 0.5%. In this case the model can be recommended for
implementation into CFD codes and used for various engineering applications,

including those in internal combustion engines.
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6 A quasi-discrete model for heating and evaporation of complex

multi-component hydrocarbons fuel droplets

6.1 Introduction

As mentioned in Chapter 1, two main approaches to modelling multi-
component droplets heating and evaporation have been suggested: those based on the
analysis of individual components (Discrete Component ‘DC’ models) (Tong and
Sirignano, 1986; Continllo and Sirignano, 1991; Klingsporn and Renz, 1994; Lage et
al, 1995; Abraham and Magi, 1998; Aggarwal and Mongia, 2002; Maqua et al,
2008b), applicable in the case when a small number of components needs to be taken
into account, and those based on the probabilistic analysis of a large number of
components (e.g. Continuous Thermodynamics approach ‘CT’) (Tamim and Hallet,
1995; Lippert and Reitz, 1997; Hallet, 2000; Zhu and Reitz, 2002; Arias-Zugasti and
Rosner, 2003; Abdel-Qader and Hallet, 2005; Zhang and Kong, 2009; Rivard and
Briiggemann, 2010) and the Distillation Curve Model (Burger et al, 2003). In the
second family of models a number of additional simplifying assumptions were used,
including the assumption that species inside droplets mix infinitely quickly or do not
mix at all.

A model containing features of both these groups of models has been
suggested in (Laurent et al, 2009; Zhang and Kong, 2010). In all of these models, it
was assumed that the species in droplets are well mixed. As follows from our
analysis of heating and evaporation of bi-component droplets (Chapters 4 and 5), this
assumption appears to be questionable.

In this chapter a new method of modelling heating and evaporation of multi-
component droplets, suitable for the case when a large number of components is
present in the droplets, is suggested. As in Laurent et al (2009), this method is based
on the introduction of pseudo-components, but these pseudo-components are
introduced in a way which differs from the one described in Laurent et al (2009). In
contrast to the previously suggested models, designed for large numbers of
components, the new model takes into account the diffusion of liquid species and
thermal diffusion as in the classical DC models.

The new model, based on the introduction of the concept of quasi-components,

is described in Section 6.2. The thermo-physical properties of quasi-components are

114



Chapter 6: A quasi-discrete model for heating and evaporation of complex multi-component

summarised in Section 6.3. The preliminary results of application of the new model
to Diesel fuel droplets are presented and discussed in Section 6.4. Detailed results of
application of the new model to Diesel and gasoline fuels are presented in Sections
6.5 and 6.6 respectively. The main results of this chapter are summarised in Section

6.7.

6.2 Quasi-discrete model

As in the case of Continuous Thermodynamics approach, the quasi-discrete
model is based on the introduction of the distribution function f,,,(I) such that

f,lf fn(DdI =1, (6.1)

where I is the property of the component (usually taken as the molar mass M), f,,
characterises the relative contribution of the components having this property in the
vicinity of I, I; and I, are limiting values of this property. For most practically
important fuels f,,(I) can be approximated by relatively simple functions (see Eq.
(2.40)).

In most practically important cases the approximation for realistic multi-
component fuel in the form (2.40) is valid only in the limited range of I: I; > y and
I, < oo, where y is the parameter that determines the original shift (Eq. (2.40)). In

this case distribution (2.40) needs to be replaced by the following distribution:

fn(D) = G S22 exp [~ (2] (6:2)

where constant C,, is defined from Condition (6.1) as
6 = {01 Gy ewe [ ()] ) (63)
Although molar mass is almost universally used to describe the property I, this
choice is certainly far from being a unique one. For example, in Laurent et al (2009),
this parameter was associated with the normal boiling points of individual
components. Remembering that most practically important hydrocarbon fuels consist
mainly of molecules of the type C,H»,+2, where n = 1 in the general case or n = 5
for liquid fuels, it is more practical to write the distribution function f,,, as a function
of the carbon number n rather than M, Arias-Zugasti and Rosner (2003). These two

parameters are linked by the following equation:

M(n) = 14n + 2, (6.4)

where M is measured in kg/kmole.
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Note that real life Diesel and gasoline fuels, apart from alkanes, contain
significant amounts of alkenes, alkynes, naphthenes and aromatics. The contribution
of these elements is not taken into account at this stage, and this is a serious
limitation of our model.

Remembering (6.4), Eq. (6.2) can be rewritten as:

fn () = Cyn (g, ) P exp [ - (M) (6.5)

where ny < n < ng, subscripts o and ; stand for initial and final,

Cn(no ns) = {f;f%exp [— (@)] dn} ) (6.6)

This choice of C,,, assures that
f;‘of fn(m)dn = 1. 6.7)
Following Arias-Zugasti and Rosner (2003), we assume that transport and
thermodynamic properties of hydrocarbon fuels are weak functions of n. In this case
it would be sensible to assume that the properties of hydrocarbons in a certain
narrow range of n are about the same, and replace the continuous distribution (6.5)

with a discrete one, consisting of Ny quasi-components with carbon numbers:

) nfman

n=—a— 6.8
T L) fmman (05)
the corresponding molar fractions
— (Y
X; = fnj_lfm(n)dn, (6.9)
and mass fractions
M(7R)X;
(bwE rr—— L (6.10)
Zj=1 [M(ﬁ])X]]
where j is an integer in the range 1 < j < N;. Note that
J=Ngy _ §J=Npy
ijl X = ijl Y, =1. (6.11)

The choice of n; can be arbitrary. In our model we assume that all n; —n;_,
are equal, i.e. all quasi-components have the same range of values of n (this range
can consist of non integer values in the general case). For the case when Ny = 1 this
approach reduces the analysis of multi-component droplets to mono-component
ones.

These new quasi-components are not the actual physical hydrocarbon

components (7; are not integers in the general case). Hence, we call this model the
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‘quasi-discrete model’. These quasi-components will be treated as actual components
in the conventional DC models, including taking into account diffusion of liquid
species in droplets. This model is expected to be particularly useful when Ny is much
less than the number of actual species in the hydrocarbon mixture.

The analysis of multi-component droplet heating and evaporation using this
model is essentially based on the approximations of thermo-physical properties of

quasi-components for various 71;. These are discussed in the next section.

6.3 Thermo-physical properties

6.3.1 Saturated vapour pressure
Following Arias-Zugasti and Rosner (2003), the saturation vapour pressure in

(MPa) is estimated using the Antoine equation:

Poac () = exp (A(m) — 2005). (6.12)

where A(n) = 6.318n%0%%91 B(n) = 1178n°%*%52, C(n) = 9.467n%°13, T, is the
droplet surface temperature in K. The approximations for A(n), B(n), C(n) were
derived for 4 < n < 17, but we will assume that they can be applied for n > 17 as
well if the contribution of hydrocarbon fuels with these n is relatively small. Having
replaced n in Eq. (6.12) with 7;, calculated by Eq. (6.8), we obtain the required
values of pg,e for all quasi-components. The mixtures will be treated as ideal
(Raoult’s law is assumed to be valid). In this case, partial pressures of individual
quasi-components can be estimated as:

Po() = Xisi ()Psar (7). (6.13)
where Xjg; is the molar fraction of liquid quasi-species at the surface of the droplet,
Dsat (1) is determined by Eq. (6.12). The values of psq¢(n) predicted by Eq. (6.12)
for n=10 and n=12 (n-decane and n-dodecane) in the temperature range 300-500 K
differed from those reported in Abramzon and Sazhin (2006) by not more than
6.05% and 5.62% respectively.

6.3.2 Latent heat of evaporation
From the Clausius—Clapeyron equation it follows that (Arias-Zugasti and

Rosner, 2003):

_ Ry dInpgsqe(n)
Lo = -4 e (6.14)
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where R,, is the universal gas constant. Remembering (6.12), Formula (6.14) can be

rewritten as:

RyB(M)TZ

L) = Som-con

(6.15)

The latter formula will be used in our analysis. Having replaced n in Eq. (6.15) with
7, calculated by Eq. (6.8), we obtain the required values of L(n) for all quasi-
components.

The plots of L(n) for temperatures in the range from 300 K to 500 K are
shown in Fig. 6.1. As one can see from this figure, L(n) increases with decreasing
temperature as expected. For small n (n < 10), L(n) slowly decreases with increasing
n, while at larger n it increases with increasing n, and this increase is particularly
strong for low temperatures. This is consistent with our expectation that heavier
components are generally less volatile compared with the lighter ones. The values of
L(n) predicted by Egs. (6.14) and (6.15) for n=10 and n=12 (n-decane and n-
dodecane) in the temperature range 300-500K differed from those reported in
Abramzon and Sazhin (2006) by not more than 4.82% and 3.52% respectively.
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Fig. 6.1 The plots of L(n) versus n as predicted by Eq. (6.15).

6.3.3 Critical and boiling temperatures
Using data provided in Poling et al (2000), the dependence of critical and

boiling temperatures on n is approximated by the following equations:
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T..(n) = acr + beyn + copn? + dgn3, (6.16)
T,(n) = ap + byn + c,n? + dyn3, (6.17)

where the coefficients are presented in Table 6.1.

Coefficient a b c d

Critical | 242.3059898052 | 55.9186659144 | - 2.1883720897 | 0.0353374481

Boiling 118.3723701848 | 44.9138126355 | - 1.4047483216 | 0.0201382787

Table 6.1 The values of the coefficients in Egs. (6.16) and (6.17).
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Fig. 6.2 The plots of T,,.(n) and T, (n), and their Approximations (6.16) and (6.17),
Versus 1.

The plots of T,,.(n) and T, (n) are shown in Fig. 6.2 alongside the values of
these parameters for individual n as reported in Poling et al (2000). As follows from
this figure, Approximations (6.16) and (6.17) are reasonably accurate and can be
used in our model. Having replaced n in Egs. (6.16) and (6.17) with 71; we obtain the

required values of T,,.(n) and T, (n) for all quasi-components.

6.3.4 Liquid density
Following Yaws (2008), the temperature dependence of the density of liquid n-

alkanes in (kg/m’) for 5 < n < 25 is approximated as
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_ ()"
pi(n, T) = 10004,B, cr(m) (6.18)
where T,,-(n) are the critical temperatures for n-alkanes (approximations for T, (1)
for 5 <n < 25 are shown in Fig. 6.2 (Eq. (6.16)), the numerical values of 4,, B,
and C, for individual values of n are given in Yaws (2008). These values have been

approximated by the following expressions:

A, = 0.00006196104 x n + 0.234362

B, = 0.00004715697 X n? — 0.00237693 xn + 0.2768741 (6.19)
C, = 0.000597039 xn + 0.2816916

The range of applicability of Eq. (6.18) depends on the values of n. For n =5
this range was determined as 143.42-469.65 K; for n = 10 this range was determined
as 243.49-618.45 K; for n = 25 this range was determined as 315.15-850.13 K
(Yaws, 2008) (the upper limits are critical temperatures of the components).
Remembering that the contribution of n-alkanes with n close to 25 is relatively
small, we will assume that Egs. (6.18) and (6.19) are valid in the whole range from

the room temperature until close to the critical temperature.
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Fig. 6.3 The plots of p; versus n for 7= 300 K and 7 = 450 K, as inferred from Eq.
(6.18) with coefficients A,, B, and C, given by Yaws (2008) (filled squares for T' =
300 K and filled triangles for 7" = 450 K), and approximated by Egs. (6.19) (blue
curve for 7= 300 K and red curve for T =450 K).
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The plots of p; versus n for T= 300 K and 7 = 450 K, as inferred from Eq.
(6.18) with coefficients 4,, B, and C, given by Yaws (2008) (squares and triangles),
and approximated by Eqgs. (6.19) (blue and red curves) are shown in Fig. 6.3. As
follows from this figure, the agreement between the values of liquid density
predicted by Approximation (6.18) with the values of the coefficients given in Yaws
(2008) and approximated by Egs. (6.19) looks almost ideal. For temperatures of 300
and 450 K, the values of density inferred from Eq. (6.18) with coefficients given by
Egs. (6.19) differ by less than 0.51% and 0.76% respectively from the values of
density inferred from Eq. (6.18) with coefficients given by Yaws (2008).

6.3.5 Liquid viscosity
Following Mehrotra (1994), the temperature dependence of the dynamic

viscosity of liquid n-alkanes in (Pa.s) for 4 < n < 44 is approximated as

1,(n,T) = 10-3 (10[10000.011"™] _g gy (6.20)
where

b(n) = —5.745 + 0.616 In(n) — 40.468n"15 (6.21)
0.014
0.012
0.01
2 0.008

&
= 0.006
0.004
0.002
0 :
5 10 15 20 25
n

Fig. 6.4 The plots of y; versus n for 7= 300 K and 7 = 450 K, as inferred from Eqgs.
(6.20) and (6.21) (blue (T = 300 K) and red (T = 450 K) curves), and the
corresponding values of y; in the range 5 < n < 12, inferred from NIST website
(filled squares (T = 300 K) and filled triangles (7 = 450 K)).
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The temperature range of the applicability of Approximations (6.20) and (6.21)
was not explicitly specified in Mehrotra (1994), but the author of this paper
demonstrated good agreement between the predictions of these approximations and
experimental data in the range of temperatures from 10 °C to 100 °C.

The plots of y; versus n for 7= 300 K and T = 450 K, as inferred from Egs.
(6.20) and (6.21) (blue and red curves), and the corresponding values of p; in the
range 5 < n < 12, inferred from NIST website (National Institute of Standards and
Technology) (squares (T = 300 K) and triangles (T = 450 K)), are shown in Fig. 6.4.
As follows from this figure, the agreement between the values of liquid dynamic
viscosity predicted by Approximations (6.20) and (6.21) and the results presented on
the NIST website looks almost ideal. The differences between the results predicted
by Eq. (6.20) and NIST data for 300 K and 450 K were found to be less than 5.13%
and 40.16% respectively. Large errors in the latter case are linked with small values
of u. Note that the values of dynamic viscosity affect droplet heating and evaporation
only via the corrections to values of the thermal conductivity and diffusivity in the
Effective Thermal Conductivity and Effective Diffusivity (ETC/ED) models. In most
practically important cases, the influence of viscosity on the final result is expected

to be very weak.

6.3.6 Heat capacity
Following van Miltenburg (2000), the temperature dependence of the heat
capacity of liquid n-alkanes in (J/(kg.K)) for 2 < n < 26 is approximated as

(6.22)

Cl(n, T) =1000 (43.9+13.99(n—1)+0.0543(n—1)T)

M(n)
where M (n) is defined by Eq. (6.4).

The temperature range of applicability of Eq. (6.22) was not clearly identified
by van Miltenburg (2000) for all n, except to say that this approximation is not valid
at temperatures close to the temperature of fusion. For n = 16 and n = 17 these
ranges were identified as 340-400 K and 335-400 respectively. In the case of n = 16
and n = 25 the temperatures of fusion are equal to 295.1 K and 329.25 K
respectively. However, remembering that the contribution of the n-alkanes with n >
16, is very small, it will be assumed that Approximation (6.22) is valid in the whole

temperature range from the room temperature onwards.
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The plots of ¢; versus n for T = 300 K and T = 450 K, as inferred from Eq. (6.22)
(blue and red curves), and the corresponding experimental values of ¢; for T =300 K
in the range 5 < n < 18, inferred from NIST website (squares) and van Miltenburg
(2000) (circles), are shown in Fig. 6.5. As follows from this figure, the agreement
between the values of the liquid heat capacity predicted by Approximation (6.22)
and the experimental results for 7 = 300 K looks almost ideal. The difference
between the results predicted by Eq. (6.22) and data reported in NIST website and
van Miltenburg (2000) for 300 K was found to be less than 0.91%. We are not aware
of experimental data for 7= 450 K.
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= 2400 A
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Fig. 6.5 The plots of ¢; versus n for 7= 300 K and 7 = 450 K, as inferred from Eq.
(6.22) (blue (T = 300 K) and red (T = 450 K) curves), and the corresponding
experimental values of ¢; for 7 = 300 K in the range 5 < n < 18, inferred from
NIST website (filled squares) and van Miltenburg (2000) (filled circles).

6.3.7 Thermal conductivity
Following Yaws (1995), the temperature dependence of thermal conductivity

of liquid n-alkanes in (W/(m.K)) for 5 < n < 20 is approximated as

Ax+B (1—L)2/7]
k,(n,T) =100 "\ Ter@/ ] (6.23)

where T,,.(n) are the critical temperatures for n-alkanes approximated by Eq. (6.16),
the numerical values of A, and B for individual values of n are given in Yaws

(1995). These values have been approximated by the following expressions:

123



Chapter 6: A quasi-discrete model for heating and evaporation of complex multi-component

A, (1) = 0.002911 x n% — 0.071339 x n — 1.319595
{ k() n n (6.24)

By (n) = —0.002498 x n? + 0.058720 xn + 0.710698

Although Approximations (6.23) and (6.24) have been derived for 5 < n <

20, they are used in the whole range 5 < n < 25. Possible errors imposed by these

approximations in the range 21 < n < 25 are expected to have very small effect on

the final results as the mass fractions of n-alkanes in this range of n is very small in
Diesel fuel, and negligible in gasoline fuel.

The range of applicability of Eq. (6.23) depends on the values of n. Forn =5
this range was determined as 143-446 K; for n = 10 this range was determined as
243-588 K; for n = 20 this range was determined as 310-729 K (Yaws, 1995).
Remembering that the contribution of n-alkanes with n > 20 is relatively small, we
have assumed that Eqs. (6.23) and (6.24) are valid in the whole range from the room
temperature until close to the critical temperature, as in the case of Approximations

(6.18) and (6.19).
0.2
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0.1
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0.06

Fig. 6.6 The plots of k; versus n for 7= 300 K and 7 = 450 K, as inferred from Eq.
(6.23) with coefficients A, and By, given by Yaws (1995) (filled squares (7' = 300 K)
and filled triangles (7" = 450 K)) and approximated by Eqgs. (6.24) (blue and red
curves); the values of k; inferred from NIST website (squares (7 = 300 K) and
triangles (T = 450 K)).

The plots of k; versus n for T = 300 K and T = 450 K, as inferred from Eq.
(6.23) with coefficients A, and B;, given by Yaws (1995) (filled squares (7' = 300 K)
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and filled triangles (7' = 450 K)) and approximated by Eqgs. (6.24) (blue and red
curves) are shown in Fig. 6.6. In the same figure we have shown the values of k;
inferred from NIST website (squares (7" = 300 K) and triangles (7" = 450 K)). As
follows from this figure, the agreement between the values of thermal conductivity
predicted by Approximation (6.23) with the values of the coefficients given in Yaws
(1995) and approximated by Egs. (6.24) looks almost ideal. Both these values agree
well with the data reported in NIST website. For temperatures 300 and 450 K, the
values of thermal conductivity inferred from Eq. (6.23) with coefficients given by
Egs. (6.24) differ by less than 2.46% and 7.80% respectively from the values of
thermal conductivity inferred from Eq. (6.23) with coefficients given by Yaws
(1995).

Note that during calculations, a small number of lighter components inside
droplets could have temperatures exceeding their critical temperatures. In this case,
the values of saturation pressure, latent heat of evaporation, density, viscosity, heat
capacity and thermal conductivity were assumed equal to those at T = T,,. This
assumption allows us to avoid the analysis of heat and mass transfer in supercritical
conditions, without imposing significant errors in our analysis due to the fact that the
amount of components affected by this assumption is very small. Having replaced n

in Egs. (6.18-6.24) with n; (Eq. (6.8)) we obtain the required values of liquid

density, viscosity, heat capacity and thermal conductivity for all quasi-components.

6.3.8 Diffusion coefficients

In the case of mono-component droplets, the value of the diffusion coefficient
of vapour in air D, can be estimated from the Wilke-Lee formula (Eq. (4.33))
(Poling et al, 2000).

Assuming that air is the dominant component in the air/fuel vapour mixture,
the same formula will be used for multi-component droplets with molecular weight

of vapour M,, defined as
= =T (6.25)

where the additional subscript , indicates that X; refers to the vapour phase.

Parameters o, and €, /kg , used in calculation of Eq. (4.33), are assumed to be equal
to those of n-dodecane for the case of Diesel fuel and to those of n-octane for the

case of gasoline fuel (Sazhin et al, 2005b) (see Appendix A), since no reliable
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information referring to the dependence of these parameters on 7 is available to the
best of our knowledge.

Among various approximations for the diffusion coefficient for liquid D; we
have chosen the Wilke-Chang approximation as illustrated in Appendix C (Eq.
(C.9)).

6.3.9 Liquid and gas phase models

As in previous Chapters 4 and 5, we used the Effective Thermal Conductivity
(ETC) (Egs. (2.13) and (2.23)) and Effective Diffusivity (ED) (Egs. (4.8) and (D.38))
models for the liquid phase, and the model suggested in Abramzon and Sirignano
(1989) (Egs. (2.30) and (2.31)) for the gas phase. Whenever appropriate, the results
will be compared with the prediction of the Infinite Thermal Conductivity (ITC) and
Infinite Diffusivity (ID) models.

These models are described in detail in Chapters 3 and 4. In contrast to most
previous studies, our analysis is based on the incorporation of the analytical solutions
to the heat transfer and species diffusion equations inside droplets into a numerical
code (Solution A in Chapter 4), rather than on the numerical solutions to these
equations. The applicability of the ETC model to the analysis of droplet heating and
evaporation has been demonstrated in Abramzon and Sirignano (1989) for the
simplest case when the effects of thermal radiation and the dependence of transport
coefficients on temperature are ignored and in Abramzon and Sazhin (2005, 2006) in
the general case when both these affects are taken into account. The applicability of

the ED model has been investigated in Delplanque et al (1991).

6.3.10 Parameters for the distribution functions
Following Arias-Zugasti and Rosner (2003) we assume the values of
parameters for the distribution function (6.5) for Diesel and gasoline fuels shown in

Table 6.2.

Y
Fuel a P (kg/kmole) n n
(kg/kmole) 0 !
Diesel 18.5 10 0 5 25
Gasoline 5.7 15 0 5 18

Table 6.2 The parameters of the distribution function (6.5) for Diesel and gasoline
fuels.
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Fig. 6.7 The plots of f,,(n) versus n as predicted by Eq. (6.5) for Diesel (red) and
gasoline (blue) fuels for the values of parameters given in Table 6.2.

The plots of f;,(n) versus n for Diesel and gasoline fuels for the values of
parameters given in Table 6.2 are shown in Fig. 6.7. As follows from this figure, the
forms of the plots of f,,,(n) versus n for Diesel and gasoline fuels appear to be rather
different. The values of n for which f,,(n) is maximal are equal to 12.4 and 5 for
Diesel and gasoline fuels respectively. These values are different from the value of

n; = 12.5644 for Diesel fuel and 71; = 7.0223 for gasoline fuel for n;.; = ng and n; =
ns, as predicted by Eq. (6.8). Both these values are reasonably close to n = 12,
referring to n-dodecane and n = 8, referring to n-octane, which are commonly
considered as close approximations of Diesel and gasoline fuels respectively. The
analysis of droplet heating and evaporation for both fuels will be performed

separately below.

6.4 Preliminary results for Diesel fuel

Firstly, we assume that the dependence of liquid density, dynamic viscosity,
heat capacity and thermal conductivity on n can be ignored, and they are equal to
those of n-dodecane for Diesel fuel (Sazhin et al, 2005b; 2006). The temperature
dependence of these coefficients is taken into account (Appendix G). A sensitivity
study of the n-dodecane properties are performed in Appendix G. This approach is

consistent with the one used in Arias-Zugasti and Rosner (2003).
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To illustrate the efficiency of the model, described above, we use the same
values of parameters as in Sazhin et al (2006). Namely, we assume that the initial
droplet temperature is equal to 300 K, and is homogeneous throughout its volume.
Gas temperature is assumed to be equal to 880 K and gas pressure is assumed to be
equal to 3 MPa. The initial composition of droplets is described by distribution
function (6.5).

The plots of droplet surface temperature 75 and droplet radius R, versus time
for the initial droplet radius equal to 10 um and velocity 1 m/s are shown in Fig. 6.8.
The droplet velocity is assumed to be constant during the whole process. The
calculations were performed for the case of Ny = 1 (one quasi-component droplet)

and Ny =20 (20 quasi-components droplet), using the ETC/ED and ITC/ID models.

800 12
Diesel fuel
700 - [ 10
- 8
—~ 600 -
3 A
=t N
500 A
— - 4
—
400 - —— One quasi-component-ETC/ED 5
— Twenty quasi-components-ETC/ED
— Twenty quasi-components-ITC/ID
300 T T T T T T 0
0 0.25 0.5 0.75 1 1.25 1.5

Time (ms)

Fig. 6.8 The plots of Ty and Ry, predicted by three models, versus time. The initial
droplet radius and temperature are assumed to be equal to 10 um and 300 K
respectively, the droplet velocity is assumed to be equal to 1 m/s and its changes
during the heating and evaporation process are ignored, gas temperature is assumed
equal to 880 K. These are the models used for calculations: Effective Thermal
Conductivity (ETC)/Effective Diffusivity (ED) model using one quasi-component
(red), ETC/ED model using twenty quasi-components (blue), Infinite Thermal
Conductivity (ITC)/Infinite Diffusivity (ID) model using twenty quasi-components

(purple).
As one can see from this figure, the evaporation times and T, especially at the

final stages of droplet heating and evaporation, predicted by the ETC/ED model,
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using one and twenty quasi-components are noticeably different. The model, using
twenty quasi-components predicts higher surface temperatures and longer
evaporation time compared with the model using one quasi-component. This can be
related to the fact that at the final stages of droplet evaporation the species with large
n become the dominant, as will be demonstrated later. These species evaporate more
slowly than the species with lower n and have higher wet bulb temperatures (see Fig.
6.1).

Also, there are noticeable differences in predictions of the ETC/ED and
ITC/ID models, using twenty quasi-components, especially in the case of surface
temperature at the initial stages of droplet heating and evaporation. The accurate
prediction of this temperature is particularly important for prediction of the auto-
ignition timing in Diesel engines (Sazhin et al, 2005b). This questions the reliability
of the models for heating and evaporation of multi-component droplets, based on the
ITC/ID approximations. As mentioned in the Introduction, these models are almost
universally used for modelling these processes, especially when a large number of
components are involved in the analysis.

The plots of T and R; at time equal to 0.25 ms versus the number of quasi-
components Ny, predicted by the ETC/ED and ITC/ID models, are shown in Fig. 6.9
for the same conditions as in Fig. 6.8. Symbols refer to those Ny for which
calculations were performed. As follows from this figure, for Nf = 5 the predicted 7
and R; no longer depend on Ny Hence, heating and evaporation of Diesel fuel
droplets can be safely modelled using just 5 quasi-components. This number can
even be reduced to 3 if errors less than about 0.3% can be tolerated. The errors due
to the ITC/ID approximation in this case are significantly larger than those due to the
choice of a small number of quasi-components, especially for the surface
temperature. These errors cannot be ignored in most engineering applications, and
this questions the applicability of the models using the ITC/ID approximation,

including the widely used Continuous Thermodynamics models.
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Fig. 6.9 The plots of T, (a) and R, (b) versus the number of quasi-components Ny for
the same conditions as in Fig. 6.8 at time 0.25 ms as predicted by the ETC/ED
(squares) and ITC/ID (triangles) models.

Plots similar to those shown in Fig. 6.9 but at time equal to 1 ms are shown in
Fig. 6.10. As one can see from this figure, both droplet surface temperature and
radius can be well predicted if only 5 quasi-components are used. This number can
even be reduced to 3 if errors of about 0.5% can be tolerated. In contrast to the case

shown in Fig. 6.9, the droplet surface temperatures predicted by the ETC/ED and

130



Chapter 6: A quasi-discrete model for heating and evaporation of complex multi-component

ITC/ID models practically coincide, but the difference in predicted droplet radii is

significantly larger than in the case shown in Fig. 6.9.
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Fig. 6.10 The same as Fig. 6.9 but at time 1 ms.

The closeness of the temperatures predicted by ETC/ED and ITC/ID models at

the later stages of droplet heating and evaporation can be related to the fact that at

this stage the droplet temperature becomes almost homogeneous (see Fig. 6.15) and
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the effects of temperature gradient inside droplets can be ignored. Smaller droplet
radii predicted by the ITC/ID model, compared with the ETC/ED model, can be
related to lower temperatures at the initial stages of droplet heating and evaporation
predicted by the ITC/ID model compared with the ETC/ED model.

Comparing Figs. 6.9 and 6.10 one can see that at early stages of droplet
heating and evaporation (¢ = 0.25 ms), the predicted droplet radius reduces slightly
with the increase in the number of quasi-components used, while at a later stage (1 =
1 ms) the opposite effect is observed. This could be related to the fact that at the
early stages, droplet evaporation is controlled by the most volatile quasi-components,
while at the later stages it is controlled by less volatile quasi-components. When the
number of quasi-components increases then the volatility of the most volatile
component increases and that of the least volatile decreases.

Plots similar to those shown in Fig. 6.8 but for the initial droplet radius equal
to 25 um are shown in Fig. 6.11. The conclusions which can be drawn from this

figure are essentially the same as those obtained from Fig. 6.8.
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Fig. 6.11 The same as Fig. 6.8 but for the initial droplet radius equal to 25 um.

Plots similar to those shown in Figs. 6.9 and 6.10 but for the initial droplet
radius equal to 25 pm and at time equal to 2 ms are shown in Fig. 6.12. As can be

seen from this figure, the choice of 5 or even 3 quasi-components is sufficient for
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accurate prediction of droplet surface temperature and radius, in agreement with the

results shown in Figs. 6.9 and 6.10. Also, in agreement with the results shown in Fig.

6.9, the droplet surface temperature predicted by the ITC/ID model is significantly

(about 10 K) lower than the one predicted by the ETC/ED model. This provides an

additional argument to support the application of the ETC/ED model rather than

ITC/ID model.
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Fig. 6.12 The same as Figs. 6.9 and 6.10 but for the initial droplet radius equal to 25

um and time equal to 2 ms.
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Fig. 6.13 The plots of Y; versus R/R, for three quasi-component droplets (i = 1, 2, 3)
at four moments of time as indicated near the curves. The same droplet and gas
parameters as in Fig. 6.8 are used.

To illustrate the time evolution of the distribution of mass fractions of species
inside droplets, we consider the case shown in Fig. 6.8 for three quasi-components.
The plots of Y;, where i = 1, 2, 3, versus normalised radius R/R; for t =0, 0.3 ms,

0.5 ms and 1 ms are shown in Fig. 6.13. As one can see from this figure, the mass
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fraction of the heaviest component Y3 is always increasing with time, especially near
the droplet surface. At the same time, the mass fraction of the lightest component
(Y1) decreases with time, and almost disappears at time 1 ms. The behaviour of the
middle component (Y;) is more complex. Initially, it increases with time, especially
near the droplet surface, similarly to Y3. At later times (t = 1 ms), however, it
decreases with time, similarly to Y;. These plots clearly show the significance of the
gradients of concentration of all components at all times except the initial moment of
time. This illustrates the limitations of the ID model, which is widely used in
engineering applications.

The plots of Y; versus time of the same quasi-components as in Fig. 6.13 are
presented in Fig. 6.14. The results presented in this figure are consistent with those
shown in Fig. 6.13. The values of Y; monotonically decrease with time, while those
of Y3 monotonically increase with time. The values of Y, initially increase with time,
but at later times they rapidly decrease with time. At times close to the moment when
the droplet completely evaporates, only the quasi-component Y3 remains. Since this
quasi-component is the most slowly evaporating one, and has the highest wet bulb
temperature, the model based on three quasi-components is expected to predict
longer evaporation times and larger droplet surface temperatures at the final stages of
droplet evaporation, compared with the model using one quasi-component. This
result can be generalised to the case when the number of quasi-components is greater
than 3. It is consistent with results shown in Figs. 6.8 and 6.11.
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Fig. 6.14 The plots of Y|; versus time of the same quasi-components as in Fig. 6.13.
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Fig. 6.15 The plots of T versus R/R; for one quasi-component (solid) and twenty
quasi-components (dashed) droplets at five moments of time as indicated near the
curves. The same droplet and gas parameters as in Fig. 6.8 are used.

In Fig. 6.15 the time evolution of the distribution of temperature inside
droplets is shown for the same case as in Fig. 6.8. Two cases are considered: one
quasi-component and twenty quasi-components. As follows from this figure, in both
cases, initially mainly the area close to the droplet surface is heated and a noticeable
temperature gradient near the droplet surface can be clearly seen. At later times,
however, the temperature inside the droplet becomes more homogeneous, which
could justify the application of the ITC model. In agreement with Fig. 6.8, the model
using twenty components predicts higher temperatures compared with the model

using one quasi-component at f = 1 ms.

6.5 Detailed results for Diesel fuel

In what follows the results of application of the quasi-discrete model to Diesel
fuel, based on the new approximations for the temperature dependencies of liquid
density, viscosity, heat capacity and thermal conductivity for n-alkanes (C,H,,) for
5 <n <25 (Egs. (6.18) — (6.24)), are shown.

As in the previous section, we assume that the initial droplet temperature is
equal to 300 K, and is homogeneous throughout its volume. Gas temperature is

assumed to be equal to 880 K and gas pressure is assumed to be equal to 3 MPa. The
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initial composition of droplets is described by distribution function (6.5) with the

values of parameters for Diesel fuel given in Table 6.2, as shown in Fig. 6.7.
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Fig. 6.16 The plots of T and R, predicted by four models, versus time for the same
conditions as in Fig. 6.8. These are the models used for calculations: ETC/ED model
using one quasi-component and the approximations for liquid density, viscosity, heat
capacity and thermal conductivity given in Section 6.3 (red), ETC/ED model using
twenty quasi-components for liquid density, viscosity, heat capacity and thermal
conductivity given in Section 6.3 (blue), ITC/ID model using twenty quasi-
components for liquid density, viscosity, heat capacity and thermal conductivity
given in Section 6.3 (purple) and ETC/ED model using twenty quasi-components
for density, viscosity, heat capacity and thermal conductivity of the components
assumed to be equal to those on n-dodecane (yellow-reproduced from Fig. 6.8).

The plots of droplet surface temperature 7 and droplet radius R, versus time
for the initial droplet radius equal to 10 pm and velocity 1 m/s are shown in Fig.
6.16. The droplet velocity is assumed to be constant during the whole process. The
calculations were performed for the case of Ny = 1 (one quasi-component droplet, n
= 12.56) and Ny = 20 (twenty quasi-components droplet), using the ETC/ED and
ITC/ID models. In the same figure, the plots of 75 and Ry versus time for Ny = 20,

using the ETC/ED models, but assuming that the density, viscosity, heat capacity

and thermal conductivity of all liquid components are the same and equal to those of
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n-dodecane (as in Section 6.4) are shown. The conclusions drawn from this figure
are the same as those obtained from Figs 6.8 and 6.11.

One can see from this figure that the results predicted by a simplified model
used in Section 6.4 are noticeably different from those predicted by a more rigorous
model used in this section. This shows the limitations of the earlier used simplified
model for the density, viscosity, heat capacity and thermal conductivity of the liquid
components.

Also, there are noticeable differences in predictions of the ETC/ED and
ITC/ID models, using twenty quasi-components, especially in the case of the surface
temperature at the initial stages of droplet heating and evaporation.

The plots of 75 and R, at time equal to 0.5 ms versus the number of quasi-
components Ny, predicted by the ETC/ED and ITC/ID models, are shown in Fig.
6.17 for the same conditions as in Fig. 6.16. Symbols refer to those Ny for which
calculations were performed. As follows from this figure, for Ny = 10 the predicted
Ts and R; no longer depend on Nf. In fact the difference between the values of
temperature and radius, predicted for Ny = 5 and Ny = 20, can be considered
negligible compared with the difference between the values of temperature,
predicted by the ETC/ED and ITC/ID models. Hence, heating and evaporation of
Diesel fuel droplets can be safely modelled using just 5 quasi-components, in
agreement with the results introduced in Section 6.4, obtained for time equal 0.25 ms
using a simplified version of the quasi-discrete model. The errors due to the ITC/ID
approximation for Ny = 3 are significantly larger than those due to the choice of a
small number of quasi-components, especially for the surface temperature. These
errors cannot be ignored in most engineering applications, and this questions the
applicability of the models using the ITC/ID approximation, including the widely

used Continuous Thermodynamics models.
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Fig. 6.17 The plots of T, (a) and R, (b) versus the number of quasi-components Ny
for the same conditions as in Fig. 6.16 at time 0.5 ms as predicted by the ETC/ED
(squares) and ITC/ID (triangles) models.
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Fig. 6.18 The same as Fig. 6.17 but at time 1 ms.

Plots similar to those shown in Fig. 6.17 but at time equal to 1 ms are shown in
Fig. 6.18. As one can see from this figure, both droplet surface temperature and
radius can be well predicted if only 5 quasi-components are used. This number can
even be reduced to 3 if errors of about 0.5% can be tolerated. In contrast to the case

shown in Fig. 6.17, the droplet surface temperatures predicted by the ETC/ED and
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ITC/ID models are rather close, but the difference in predicted droplet radii is
significantly larger than in the case shown in Fig. 6.17.

In agreement with Section 6.4, smaller droplet radii are predicted by the
ITC/ID model, compared with the ETC/ED model, at the final stages of droplet
heating and evaporation due to low surface temperature predicted at the early stages
of the evaporation.

Comparing Figs. 6.17 and 6.18 one can see that at early stages of droplet
heating and evaporation (¢ = 0.5 ms), the predicted droplet radius reduces slightly
with the increase in the number of quasi-components used, while at a later stage (¢ =
1 ms) the opposite effect is observed, in agreement with the results reported in

Section 6.4.

6.6 Detailed results for gasoline fuel

Plots similar to those shown in Fig. 6.16, but for gasoline fuel, are presented in
Fig. 6.19. The maximal number of quasi-components for gasoline fuel is 13. The
initial conditions are assumed to be the same as in the case of Diesel fuel droplets to
enable us to perform direct comparison between heating and evaporation of Diesel
and gasoline fuel droplets in identical conditions. As in the case shown in Fig. 6.16,
the droplet velocity is assumed to be constant during the whole process. The
calculations were performed for the case of Nf = 1 (one quasi-component droplet,
n =7.0223) and Ny = 13 (thirteen quasi-components droplet), using the ETC/ED
and ITC/ID models. The density, viscosity, heat capacity and thermal conductivity of
all liquid components are described in Section 6.3.

As in the case of Diesel fuel droplets, the evaporation times and 7, especially
at the final stages of droplet heating and evaporation, predicted by the ETC/ED
models, using one and thirteen quasi-components are noticeably different. The
model, using thirteen quasi-components predicts higher surface temperatures and
longer evaporation time compared with the model using one quasi-component. As in
the case of Diesel fuel droplets, this can be related to the fact that at the final stages
of droplet evaporation the species with large n become the dominant. These species
evaporate more slowly than the species with lower n and have higher wet bulb

temperatures.
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Fig. 6.19 The same as Fig. 6.16 for the first three curves but for the gasoline fuel
with the maximal number of quasi-components Ny = 13. All plots are based on the
approximations for liquid density, viscosity, heat capacity and thermal conductivity
given in the Section 6.3.

The differences in predictions of the ETC/ED and ITC/ID models, using
thirteen quasi-components, are more noticeable in the case of gasoline fuel droplets
than in the case of Diesel fuel droplets. This difference can be seen not only at the
initial stage of droplet heating and evaporation, but also at the later stages of these
processes. This provides an additional support for our questioning of the reliability
of the models for heating and evaporation of multi-component droplets, based on the
ITC/ID approximations.

The plots of Ts and R, at time equal to 0.2 ms versus the number of quasi-
components Ny, predicted by the ETC/ED and ITC/ID models for gasoline droplets,
are shown in Fig. 6.20 for the same conditions as in Fig. 6.19. As follows from this

figure, for Ny = 6 the predicted 75 and R; no longer depend on Nf. In fact the
difference between the values of temperature and radius, predicted for Ny = 3 and
Ny = 13, can be considered negligible compared with the difference between the

values of temperature and radius, predicted by the ETC/ED and ITC/ID models.
Hence, heating and evaporation of gasoline fuel droplets can be safely modelled

using just 3 quasi-components. As in the case of Diesel fuel droplets, the errors due
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to the ITC/ID approximation for Ny = 3 are significantly larger than those due to the

choice of a small number of quasi-components, especially for the surface

temperature.
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Fig. 6.20 The plots of T (a) and R, (b) versus the number of quasi-components Ny for
the same conditions as in Fig. 6.19 at time 0.2 ms as predicted by the ETC/ED
(squares) and ITC/ID (triangles) models.
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Plots similar to those shown in Fig. 6.20 but at time equal to 0.75 ms are
shown in Fig. 6.21. As one can see from this figure, both droplet surface temperature

and radius can be well predicted by the ETC/ED model if only 3 quasi-components

are used.
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Fig. 6.21 The same as Fig. 6.20 but at time 0.75 ms.

Comparing Figs. 6.20 and 6.21 one can see that at the early stages of droplet
heating and evaporation (¢ = 0.2 ms), the predicted droplet radius reduces slightly
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with the increase in the number of quasi-components used, while at a later stage (¢ =
0.75 ms) the opposite effect is observed, in agreement with the results shown in Figs.

6.9, 6.10, 6.17 and 6.18.
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Fig. 6.22 The same as Fig. 6.21 but for the droplet velocity equal to 10 m/s, gas
temperature equal to 450 K and pressure equal to 0.3 MPa.

Plots similar to those shown in Fig. 6.19, but for more realistic conditions in
gasoline engines, are presented in Fig. 6.22. Following Basshuysen (2009), we
assume that gas temperature is equal to 450 K, gas pressure is equal to 0.3 MPa and
droplet velocity is equal to 10 m/s. As in the case shown in Fig. 6.19, we assume that
the initial droplet temperature is equal to 300 K, and is homogeneous throughout its
volume, while the droplet initial radius is equal to 10 pm.

Comparing Figs. 6.19 and 6.22, one can see that in the latter case the
difference between the predicted temperatures and droplet radii for one and thirteen
quasi-components is much more visible than in the former one. The same conclusion
applies to the predictions of the ETC/ED and ITC/ID models. This can be attributed
to much slower evaporation for the case shown in Fig. 6.22, compared with the case
shown in Fig. 6.19. The general trends of the curves shown in Fig. 6.22 are similar to
the ones shown in Fig. 6.19. In the case when thirteen quasi-components are
considered, at the end of the evaporation process, mainly heavier components in
droplets remain. These can reach higher temperatures and evaporate more slowly

compared with the light and middle-range components.
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Fig. 6.23 The plots of T; (a) and R, (b) versus the number of quasi-components Ny for
the same conditions as in Fig. 6.22 at time 0.5 ms as predicted by the ETC/ED
(squares) and ITC/ID (triangles) models.

The plots of Ts and R, at time equal to 0.5 ms versus the number of quasi-
components N¢ , predicted by the ETC/ED and ITC/ID models for gasoline droplets,

are shown in Fig. 6.23 for the same conditions as in Fig. 6.22. As in the case shown

in Figs. 6.17, 6.18, 6.20 and 6.21, for Ny = 6 the predicted T and R, no longer
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depend on N¢ . In fact this range can be extended to Ny = 3 at least for the ETC/ED
model. In contrast to the cases shown in Figs. 6.17, 6.18, 6.20 and 6.21, the
temperatures and radii, predicted by the ETC/ED and ITC/ID models, appear to be
very close for small numbers of quasi-components. This can be related to the fact
that in this case the temperature reaches the saturation level by the time 0.5 ms, when

one or two components are considered.

400
(a)
a 0 o (m] (m] m
380 A |
<
~ (m]
~
360 A
o ETC/ED model
(A 1 =
Time =2 ms ITC/ID model
340 . T . T
0 3 6 9 12
Number of quasi-components
7
] ®) |
[m]
6.6 -
E 64 -
=
&2 62 -
[m]
6 -
o ETC/ED model
58 Time = 2 ms
. ITC/ID model
[
5.6 1 1 1 1
0 3 6 9 12

Number of quasi-components

Fig. 6.24 The same as Fig. 6.23 but at time 2 ms.
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Plots similar to those shown in Fig. 6.23 but at time equal to 2 ms are shown in
Fig. 6.24. As in the case shown in Fig. 6.23, both droplet surface temperature and
radius can be well predicted by the ETC/ED model if only 3 quasi-components are
used. In contrast to the case shown in Fig. 6.23, the temperatures and radii, predicted
by the ETC/ED and ITC/ID models, appear to be very close only for the case when

one quasi-component is used.
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Fig. 6.25 The plots of Y,; versus time for four quasi-components (i = 1, 2, 3, 4) for
the same case as shown in Fig. 6.22.

The plots of Y;; versus time for the four quasi-components for the same case as
shown in Fig. 6.22 are presented in Fig. 6.25. The results presented in this figure are
consistent with those shown in Fig. 6.14 for Diesel fuel using a simplistic approach
to approximate liquid density, viscosity, heat capacity and thermal conductivity of
the liquid components. The values of Y;; monotonically decrease with time, while
those of Y,4 monotonically increase with time. The values of Y, and Y3 initially
increase with time, but at later times they rapidly decrease with time. At times close
to the moment when the droplet completely evaporates, only the quasi-component

Y4 remains.
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6.7 Conclusions of Chapter 6

A new approach to modelling the heating and evaporation of multi-component
droplets is suggested and tested for realistic Diesel and gasoline fuels droplets in
engine-like conditions. The model is based upon the assumption that properties of
components vary relatively slowly from one component to another and depend on a
single parameter. This parameter is chosen to be the number of carbon atoms in the
components (n). The components with relatively close n are replaced by quasi-
components with properties calculated as average properties of the a priori defined
groups of actual components. Thus the analysis of the heating and evaporation of
droplets consisting of many components is replaced by the analysis of the heating
and evaporation of droplets consisting of relatively few quasi-components. In
contrast to previously suggested approaches to modelling the heating and
evaporation of droplets consisting of many components, the effects of temperature
gradient and quasi-components diffusion inside droplets are taken into account.

Firstly the dependence of density, viscosity, heat capacity and thermal
conductivity of all liquid components on the carbon number was ignored and assume
to be equal to those of n-dodecane. The model, based on this approximation, is
applied to Diesel fuel droplets. It is pointed out that droplet surface temperatures and
radii, predicted by a rigorous model taking into account the effect of all 20 quasi-
components, are almost the same as those predicted by the model using five quasi-
components. Moreover, if errors less than about 1% can be tolerated, then the
number of quasi-components used can be reduced to three. On the other hand, errors
due to the assumptions that the droplet thermal conductivity and species diffusivities
are infinitely large cannot be ignored in the general case. These errors are
particularly important when the droplet surface temperature at the initial stage of
heating is predicted. The time evolution of the distribution of temperature and
species, predicted by the model, shows visible gradients of these parameters
especially near the droplet surface at the initial stage of droplet heating and
evaporation.

The model have been generalised to take into account the dependence of
density, viscosity, heat capacity and thermal conductivity of all liquid components
both on the carbon number and temperature. This model is applied to modelling of

Diesel and gasoline fuels heating and evaporation.
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In agreement with the simplified version of this model in which density,
viscosity, heat capacity and thermal conductivity of all liquid components were
assumed to be the same as for n-dodecane, it has been pointed out that for Diesel fuel
droplet surface temperatures and radii, predicted by a rigorous model taking into
account the effect of all twenty quasi-components, are close to those predicted by the
model using five quasi-components. For the Effective Thermal Conductivity/
Effective Diffusivity (ETC/ED) model, the number of quasi-components used can be
reduced to three. At the same time, the droplet surface temperature, and evaporation
time predicted by the simplified model, and the rigorous model are noticeably
different. The evaporation time predicted by the simplified model is about 10%
shorter compared with the rigorous model. This justifies the need of taking into
account the dependence of density, viscosity, heat capacity and thermal conductivity
of liquid components both on the carbon number and temperature.

It is pointed out that in the case of gasoline fuels, with the maximal number of
quasi-components equal to thirteen, a good approximation for the case of the
ETC/ED model can be achieved based on the analysis of just three components. The
difference in predictions of the thirteen and one component models appears to be
particularly important in the case when droplets evaporate in gas at a relatively low
temperature (450 K) and low pressure (0.3 MPa). In this case the evaporation time
predicted by the one component model is less than half of the time predicted by the

thirteen component model.
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7 Conclusions and recommendations for future work

7.1 Conclusions

Heating and evaporation of monodisperse mono-component fuel droplets in
ambient air at fixed temperature and atmospheric pressure have been studied
numerically and validated against available experimental results. The effective
thermal conductivity (ETC) model, which takes into account the finite thermal
conductivity of droplets and recirculation inside them, has been used for the
numerical modelling.

It is concluded that the ETC model, based on the analytical solution to the heat
conduction equation inside droplets, can predict the observed average temperature of
droplets with possible errors not exceeding several degrees, and observed droplet
radii with possible errors not exceeding 2% in most cases. These results are
consistent with those reported by Sazhin et al (2005a,b; 2006). Hence, this model can
be recommended for implementation into CFD codes and used for multidimensional
modelling of spray heating and evaporation based on these codes

The above-mentioned model has been generalised to take into account the
effect of the presence of multiple components in fuel droplets on their heating and
evaporation. This generalised model considers the effect of diffusion of liquid
species inside the droplet and the non-unity activity coefficient (ideal and non-ideal
models). The effects of recirculation in the moving droplets on heat and species
diffusion within them are taken into account using the ETC and Effective Diffusivity
(ED) models.

The predicted surface, average and central droplet temperatures have been
compared with the experimentally measured droplet average temperatures for
various mixtures of ethanol and acetone. It has been pointed out that there is a good
agreement between the predicted and observed average temperatures in the case of
pure acetone and acetone-rich mixtures. The temperatures predicted by the
simplified model are reasonably close to the temperatures predicted by the earlier
reported vortex model. Also, the temperatures predicted by the ideal and non-ideal
models differ by not more than several degrees.

The above-mentioned simplified model for multi-component droplet heating

and evaporation has been generalised to take into account the coupling between the
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droplets and the ambient gas. The effects of the non-unity activity coefficient have
been ignored (Raoult’s law is assumed to be valid) and the interaction between
droplets has been taken into account based on the correlation suggested by
Deprédurand et al (2010). The model has been validated against experimental data
for heating and evaporation of monodispersed n-decane/3-pentanone mixture
droplets at atmospheric pressure. It has been pointed out that the effect of coupling
leads to noticeably better agreement between the predictions of the model and the
experimentally observed average droplet temperatures. In most cases, the
experimentally observed droplet temperatures lie between the average and central
temperatures predicted by the coupled solution. The main effect of the coupled
solution has been linked with the reduction of the gas temperature in the region of
influence. It has been pointed out that the number of terms in the series in the
expressions for droplet temperature and species mass fraction can be reduced to just
three, with possible errors less than about 0.5%. The model can be recommended for
implementation into CFD codes and used for various engineering applications,
including those in internal combustion engines.

The simplified model for heating and evaporation of multi-component droplets
has been generalised to take into account the effect of the moving boundary on heat
and mass diffusion within the droplet. The new model has been validated against the
results predicted based on the numerical solutions to heat transfer and species
diffusion equations. It has been noticed that both solutions (based on the analytical
solutions to heat transfer and species diffusion equations and the numerical solutions
to these equations) coincide.

A new model for droplet heating and evaporation of multi-component droplets
with large number of components has been developed. The model is based upon the
assumption that properties of components vary relatively slowly from one
component to another and depend on a single parameter. This parameter is chosen to
be the number of carbon atoms in the components (n). It is based on replacing the
large number of actual components with a small number of quasi- components. This
model is called the ‘quasi-discrete model’. It has been assumed that the fuel consists
only of n-alkanes in the form C,Hj,.,;. The liquid thermophysical properties of n-
alkanes have been assumed to be the same as for n-dodecane except for the latent
heat of evaporation and saturation vapour pressure. The model is applied to Diesel

fuel. It is pointed out that droplet surface temperatures and radii, predicted by a
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rigorous model taking into account the effect of all twenty quasi-components, are
almost the same as those predicted by the model using five quasi-components.
Moreover, if errors less than about 1% can be tolerated, then the number of quasi-
components used can be reduced to three.

The quasi-discrete model has been extended to take into account the
dependence of density, viscosity, specific heat and thermal conductivity of all liquid
components on the number of carbon atoms. The extended quasi-discrete model has
been applied to modelling of Diesel and gasoline fuel droplets. It has been pointed
out that for Diesel and gasoline fuel droplets, surface temperatures and radii,
predicted by a rigorous model, taking into account the effect of all twenty quasi-
components, are close to those predicted by the model using five and three quasi-
components respectively. The evaporation time predicted by the previous version of
the quasi-discrete model is shown to be about 10% shorter compared with the
extended model. This confirms the need to take into account the dependence of
density, viscosity, heat capacity and thermal conductivity of liquid components both

on the carbon number and temperature.

7.2 Recommendations for future work

The model for heating and evaporation of multi-component droplets needs to
be implemented into ANSYS FLUENT CFD code and validated against engine-like
conditions.

The effect of radiation on heating and evaporation of multi-component fuel
droplets needs to be taken into account.

The kinetic effects on heating and evaporation of multi-component fuel
droplets need to be taken into account.

The effect of other hydrocarbons families and fuel additives on the heating and
evaporation process needs to be considered.

It is suggested that the concept of the quasi-discrete model is applied to the
modelling of heating and evaporation of biofuel droplets.

It is suggested that the effect that the existence of many components has on the

break-up process be studied.
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Appendices

Appendix A. Binary diffusion coefficient for fuel vapour
The binary diffusion coefficient for fuels (Chapter 3) was estimated using the

following equation (Bird et al, 2002):

_ 1 1 1
D, = 1.8583 x 10~7 /T3 (E+M_a)m : (A.1)

where D, is in mz/s, T is temperature in K, p is in atm (1 atm = 0.101 MPa), g, =
(0, + 0,)/2 is the minimal distance between molecules in Angstrom, Q is the
collision integral, the values of which depends on the normalised temperature
T* = kgT/€,q, kp is the Boltzmann constant, €,, = @ ; the subscript , indicates
air. Note that the formula for the binary diffusion coefficient used by Poling et al
(2000) differs from the one presented above in terms of the value of the coefficient
(they used 1.8623 instead of 1.8583). The difference between the values of this
coefficient predicted by two formulae (0.2%) can be safely ignored in most practical
applications. Note that there is a typo in Eq. (B5) of Sazhin et al (2006). o, = 3.617
Angstrom, €, /kg = 97.0 K (see Table E.1 in Bird et al, 2002).

Once the value of 7 had been found, the collision integral ), could be
obtained from Table E.2 of Bird et al (2002). However, it is more convenient to use
the analytical approximation of (0, given by the following equation (Poling et al,

2000; Bird et al, 2002):

__ 106036 0.19300 1.03587 1.76474
(T*)015610 ° exp(0.47635T*)  exp(1.52996T*)  exp(3.89411T*)

Qp (A.2)

For the binary diffusion coefficient of n-decane (C;oHy;) the following

approximation was used (Abramzon and Sazhin, 2006):

_ -6_1 (T
Dy =546 X 1070 (5=). (A.3)

where p is in atm, as in Eq. (A.1).
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Fuel Ref. | Formu | Molar Boiling Critical o gr/kg

la mass temperatur | Temperatur | (Angstrom) | (K)

(kg/kmol) | e (K) e (K)
Acetone - C;HsO | 58.080 329.22 508.1 4.600 560.2
Ethanol ?0 C,HcsO | 46.069 351.8 516.2 4.530 362.6
n-Heptane % C7Hy 100.204 371.4 540.17 5.949 399.3
3- 9'; 5| CsHyO | 86.134 375.14 561.5 4.22 351.562
Pentanone § é
Q

n-Dodecane \T: CioHye | 170.338 489.48 658 6.5972 454.6768
n-Decane _“é CioHy, | 142.29 477.3 617.3 7.38 548.895
n-Octane aa) CsHyg 114.23 398.82 568.7 7.035 361

Table A.1 The values of molar masses, boiling temperatures, critical temperatures, o;
and & /kp for acetone, ethanol, n-heptane, 3-pentanone, n-dodecane, n-decane and n-
octane, as inferred from various sources.

Appendix B. Physical properties of fuels and air

Appendix B1. Physical properties of acetone
Liquid thermal conductivity in W/(m.K) is approximated as (Maqua, 2007)

kyac = 03133614225 —0.8163 x 1073 x T + 0.1 x 107> X T2 (B.1)
Liquid dynamic viscosity in Pa.s is approximated as (Maqua, 2007)
Uiac = 0.3183313525 x 1072 — 0.16297359 x 10~* x T + 0.223333 x 107* X
T2, (B.2)
Specific heat capacity of liquid in J/(kg.K) is approximated as (Maqua, 2007)

Crac = 2165.234225 —2.963 x T + 0.01 x T2 (B.3)

Density of the liquid in kg/m” is approximated as (Maqua, 2007)
Prac = 986.5303588 — 0.6014966034 x T — 0.2754046133 x 1073 x T2. (B.4)
Vapour thermal conductivity in W/(m.K) is approximated as (Maqua, 2007)

T
73.15

(B.5)

J20.3428433650><T2

k, . =0.1143468 x(z

Vapour dynamic viscosity in Pa.s is approximated as (Maqua, 2007)
tyac = —0.44932 X 1071 X T2 + 0.3090958 x 1077 X T — 0.157988444 x
1075 . (B.6)
Specific heat capacity of vapour in J/(kg.K) is approximated as (Maqua, 2007)
Cpwac = 7.047344 x 1076 X T3 — 9.9229425 x 1073 X T? + 8.211229 x T —
458.00814. (B.7)
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Density of the vapour in kg/m’ is approximated as (Maqua, 2007)

707.7943354
Pv.ac = T . (B.3)

Latent heat of vaporization in J/kg is approximated as (Deprédurand, 2009)

(B.9)

Ter—T )0.38
Ter—=Tp ’

Ly = 489 x 103 x(

when T < T,, and zero otherwise, where T is in K.

Appendix B2. Physical properties of ethanol
Liquid thermal conductivity in W/(m.K) is approximated as (Deprédurand, 2009)

k, ., =0.61572-024127x102 T +0.3133310° xT>.  (B.10)

Liquid dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)

[686.6475282]
T

Hi e =10 ) (B.11)
Specific heat capacity of liquid in J/(kg.K) is approximated as (Deprédurand, 2009)

€ =15039-13053XT +0.4143<T> —0.39583T". (B.12)

Density of the liquid in kg/m’ is approximated as (Deprédurand, 2009)
Pretn = 1053.6 — 0.925 X T. (B.13)
Vapour thermal conductivity in W/(m.K) is approximated as (Deprédurand, 2009)

k- =1.8037x107 +7.419x10° xT +1.1536x107 xT>.  (B.14)

v,eth

Vapour dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)

o =0.29211x107 xT —0.19757x10™° - (B.15)
Specific heat capacity of vapour in J/(kg.K) is approximated as (Deprédurand, 2009)
Cpweth = 469.67 +4.2301 x T — 1.5571 x 1073 x T2, (B.16)

Density of the vapour in kg/m’ is approximated as (Deprédurand, 2009)
Pren = 0.5541 X 1072 x 2= (B.17)

Latent heat of vaporization in J/kg is approximated as (Deprédurand, 2009)
Leen, = 12091 x 103 X (T, — T)%38, (B.18)

when T < T,, and zero otherwise, where 7T is in K.
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Appendix B3. Physical properties of n-decane
Liquid thermal conductivity in W/(m.K) is approximated as (Abramzon and Sazhin,
2006)

ki n—gec = 0.1334 —0.000237 x (T — 300). (B.19)

Liquid dynamic viscosity in Pa.s is approximated as (Abramzon and Sazhin, 2006)
Hin-dgec = 0.001 x exp (4.803 x 222 - 5.0276) . (B.20)
Specific heat capacity of liquid in J/(kg.K) is approximated as (Abramzon and
Sazhin, 2006)
Cin—dec = 1000 x (2.138 + 0.0021 X (T — 300)). (B.21)
Density of the liquid in kg/m’ is approximated as (Abramzon and Sazhin, 2006)
Pin—dec = 724.74 — 0.8081 x (T — 300) . (B.22)

Vapour thermal conductivity in W/(m.K) is approximated as (Abramzon and Sazhin,

2006)

1.8
Kom-dgec = 0.012142 x (=) . (B.23)

300

Vapour dynamic viscosity in Pa.s is approximated as (Abramzon and Sazhin, 2006)
yn-gec = 1075 % (0.564 + 0.00175 x (T — 300)). (B.24)
Specific heat capacity of vapour in J/(kg.K) is approximated as (Abramzon and

Sazhin, 2006)

Cpom—dec = 103 X <0.0209 X (%)3 — 0.3296 x (%)2 + 2.0135 x ( ) _

T
300
0.0471). (B.25)
Density of the vapour in kg/m3 is approximated as (Deprédurand, 2009)
Prdecy = 001711 x 2 (B.26)
Latent heat of vaporization in J/kg is approximated as (Abramzon and Sazhin, 2006)

Ly gec = 39.578 X 103 X (T,, — T)°38, (B.27)

when T < T,, and zero otherwise, where 7T is in K.

Appendix B4. Physical properties of 3-pentanone
Liquid thermal conductivity in W/(m.K) is approximated as (Deprédurand, 2009)
ki3-pen = 0.19859 — 0.000095781 X T — 0.00000031088 X T?. (B.28)

Liquid dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)

979.8
T

Hy3-pen = 0.001 x exp (222 — 4.123) (B.29)
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Specific heat capacity of liquid in J/(kg.K) is approximated as (Deprédurand, 2009)
C13-pen = 1000 x (—1.85557 + 0.025782 x T — 0.00004 x T2) . (B.30)
Density of the liquid in kg/m’ is approximated as (Deprédurand, 2009)
Pi3-pen = 1142 — 1.1042 X T. (B.31)
Vapour thermal conductivity in W/(m.K) is approximated as (Deprédurand, 2009)
ky3-pen = 0.00000012351 X T? — 0.000004287 x T + 0.0015107. (B.32)
Vapour dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)
Iy 3-pen = 107¢ X (=0.51069 4 0.024793 x T — 0.0000041232 x T?). (B.33)
Specific heat capacity of vapour in J/(kg.K) is approximated as (Deprédurand, 2009)
Cpw3-pen = — 0.0014539 X T? + 4.1145 X T 4 430.42 . (B.34)

Density of the vapour in kg/m’ is approximated as (Deprédurand, 2009)

_ Pg
P3-peny = (g312/(0.086134xT))

(B.35)

Latent heat of vaporization in J/kg is approximated as (Deprédurand, 2009)

Ls_pen = % X (—0.000046310709 x T2 — 0.03468689 x T + 52.97188), (B.36)

when T < T,, and zero otherwise, where 7T is in K.

Appendix BS. Physical properties of n-heptane
Liquid thermal conductivity in W/(m.K)is approximated using data from Maxwell,
(1950) and presented as Sazhin et al (2006)

Kin-hep = 0.122—0.137 x T, (B.37)

—-300 . .
518 the normalized temperature.

where T =1
Liquid dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)
Hin-hep = 1072 X (=0.000002003 x T3 + 0.001847595 X T* — 0.563410432 x

T + 57.27836218). (B.38)
Specific heat capacity of liquid in J/(kg.K) is approximated following Maxwell
(1950) and Sazhin et al (2006)
Cln—nhep = 2.25 % 10% + 1.11 x 103 x T+1.87x103xT?—-489x10%x T3+
5.16 x 103 x T*. (B.39)
Density of the liquid in kg/m” is approximated following Maxwell (1950) and Sazhin
et al. (2006)
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Pin-nep = 678.93 —248.73 x T — 251.16 x T? + 735.16 x T3 — 882.37 x T*, (B.40)
when T < 0.793 , and
Pin-hep = —3.16 X 10° +8.04 X 105 x T — 5.1 x 10° x T?, (B.41)
when T > 0.793.

Vapour thermal conductivity in W/(m.K) is approximated as (Maxwell, 1950)
kyn-hep = 43933 x107° x T3 — 54311 X 107® x T? + 2.3685 X 107> x T —

0.33101, (B.42)
when > 373 K, and
Kpn-nep =7.5%107> xT? + 2.6 Xx 1072 X T + 4.19 , (B.43)

when T < 373 K.
Vapour dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009)
Hon—hep = 1076 x (=0.43965 + 0.022776 x T — 0.0000039093 x T?). (B.44)
Specific heat capacity of vapour in J/(kg.K) is approximated as (Maxwell, 1950)
Cpv3—pen = 1662.5 +1.28 x 103 X T + 121.75 X T? — 240.64 x T3 + 52.22 X
T, (B.45)

Density of the vapour in kg/m’ is approximated as (Deprédurand, 2009)
0.100205x101325

Pn—hepy = 8.314xT . (B.46)
Latent heat of vaporization in J/kg is approximated as (Deprédurand, 2009)
- =038
L—hep = 317.8 X 103 (%) , (B.47)
cr—1b

when T < T, and zero otherwise, T,,, = 0.8 and T, = 0.238 (Poling et al, 2000).

Appendix B6. Physical properties of n-dodecane
The properties of n-dodecane used in Chapter 3 are as follows:

Liquid thermal conductivity in W/(m.K)is approximated as (Deprédurand, 2009)

ki n-aoqec = 0.1405 —0.00022 x (T — 300). (B.48)
Liquid Dynamic viscosity in Pa.s is approximated as (Deprédurand, 2009):
1 1
Wi n—dodec = 0.001 X exp <631.63 X (; - 318_78)). (B.49)

Specific heat capacity of liquid in J/(kg.K) is approximated as (Maxwell, 1950;
Sazhin et al, 2006)
Cin-dodec = 2172.5 + 1260.5 X T — 63.38 x T? + 45.17 x T3. (B.50)

Density of the liquid in kg/m” is approximated as (Maxwell, 1950)
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Pin-dodec = 744.96 — 230.42 x T + 40.90 x T? — 88.7 x T3, (B.51)

Latent heat of vaporization in J/kg is approximated as (Poling et al, 2000)
Ly—dodec = 445X 105+ 33492 x T + 1.01 x 10° X T2 +9.96 x 10* x T3 —
1.17 x 10° x T*. (B.52)

when T < T, and zero otherwise.

Appendix B7. Physical properties of air
Air thermal conductivity in W/(m.K) is approximated as (Incropera and
DeWitt, 2002)
k, = 1073 x (—=0.00006 X T? + 0.113 x T — 2.2), (B.53)
where 250 K < T < 350 K, and it is approximated as (Incropera and DeWitt, 2002)
k, = 1073 x (—=0.00000000125 x T* + 0.00000244918 x T3 —
0.00153675321 X T? + 0.43343841945 x T — 22.50161033466),(B.54)
where 250 K < T < 800 K.
Air dynamic viscosity in Pa.s is approximated (Incropera and DeWitt, 2002)
Ug = 1077 x (—0.00028 X T2 + 0.654 X T + 13.6), (B.55)
where 250 K < T < 350 K, and it is approximated as (Incropera and DeWitt, 2002)
Ug = 1077 x (—0.00019342657 x T? + 0.58086013986 x T +
27.72412587413), (B.56)
where 250 K < T < 800 K.
Specific heat capacity of air in J/(kg.K) is approximated as (Incropera and DeWitt,
2002)
Cpa = 1073 x (0.0000002 X T* — 0.00009 x T + 1.016), (B.57)
where 250 K < T < 350 K, and it is approximated as (Incropera and DeWitt, 2002)
Cpa = 1073 x (=0.00000000044 x T3 4 0.00000092454 x T2 —
0.00040771821 X T + 1.05729181929), (B.58)
where 250 K < T < 800 K.
Density of air in kg/m’ is approximated as (Incropera and DeWitt, 2002)
pg = 0.0000134 X T? — 0.012025 X T + 3.5647, (B.59)
where 250 K < T < 350 K, and it is approximated as (Incropera and DeWitt, 2002)
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pa = —0.00000000685 x T3 + 0.00001408584 x T? — 0.01034857135 X T +
3.19595945166, (B.60)
where 250 K < T < 800 K.

Appendix C. Physical properties for a mixture

Appendix C1. Liquid thermal conductivity for a mixture
A number of approximate formulae for thermal conductivity in multi-
component liquids are reviewed in Poling et al (2000). The simplest Filippov
equation, valid for binary mixtures, was used in Chapter 3:
ki = Yikyy + Yokyy — 0.72Y, Yo kyy — kg, (C.1)
where Y; and Y, are mass fractions for species 1 and 2, k;; and k;, are thermal
conductivities of species 1 and 2.
For Chapters 4-6, the Vredeveld equation, valid for non-aqueous systems in
which the ratio of thermal conductivities does not exceed two, was used:
ko= (% Yik®) ™2, (C2)

where Y; are mass fractions for species i, k;; are thermal conductivities of species i.

Appendix C2. Liquid kinematic viscosity for a mixture

A number of approximate formulae for dynamic viscosity of multi-
component liquids (u;) are reviewed by Poling et al (2000). It was shown that the
approach suggested by Grunberg and Nissan is the most accurate and convenient in
practical applications. In the case of a bi-component liquid, this approach is based on
the following equation:

Inp =Xy Inpyy + X5 Inpgy — G1aX1Xo, (C.3)
where X ; are molar fractions of species 1 and 2. The values of G, depend on the
type of species involved (Poling et al, 2000). In this study, following Maqua (2007),
we use a simplified version of Eq. (C.3) assuming that G, = 0. In this case Eq. (C.3)
is simplified to:

ty = exp (Xqlnpyy + X5 Inpgp). (C.4)
The kinematic viscosity is obtained from Eq. (C.4) by dividing u; by p; which is

calculated as follows:
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_ (A, B\t
Pr= (Pl1 + Plz) ’ (C.5)

where Y, and Y, are mass fractions for species 1 and 2, p;; and p;, are liquid

densities of species 1 and 2.

Appendix C3. Specific heat capacity for a mixture
The specific heat capacity of the mixture ¢; was estimated as
a = XiYicu (C.0)

where Y; are mass fractions for species i, ¢;; are specific heat capacities of species i.

Appendix C4. Liquid diffusivity for a mixture
As in the case of liquid thermal conductivity and liquid viscosity, various
approximations for liquid diffusivity for a mixture were discussed in Poling et al
(2000). One of the simplest approximations was given by the Sanchez and Clifton
formula:
D, = [X1D7; + X,D7:](1 — m + ma), (C.7)
where the parameter m is to be found from one mixture datum point, a is the

thermodynamic factor defined as:

aal

C_l: _aaz

rp 0Xlpp
ay » are the activities of species 1 and 2, D{, and D3, are diffusivities of dilute
solute 1 in solvent 2, and dilute solute 2 in solvent 1.

Since both m and a are close to 1, Formula (C.7) can be simplified to:

D12 = XID{)Z + XZDgl' (CS)
Among various approximations for D, and DJ; we have chosen the Wilke—Chang

approximation given by the following formula:

o _ 7.4x107'2 [oMpT
Dyp = ) (C.9)

ugvee

where DJp is the mutual diffusion coefficient of solute A at very low concentrations
in solvent B, mZ/s, M3 is the molar mass of solvent B, kg/kmol, T temperature in K,
up dynamic viscosity of solvent B, cP (1 cP = 107 kg m’! s'l), V4 is the molar volume
of solute A at its normal boiling temperature, cm’/mol calculated as in Eq. (4.35), ¢

is the associated factor of solvent B (¢ = 1.5 if B is ethanol, ¢ = 1 if B is acetone).
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When calculating D, based on Eq. (C.8) the values of X;, X, and 7, averaged over
the whole volume of droplets, were used. These parameters were updated at each

timestep.

Appendix C5. Latent heat of vaporization for a mixture
The latent heat of vaporization of a mixture L was estimated as (Sazhin,
2006)
L=Y€¢L;, (C.10)
where €; = €;(t) is the evaporation rate of species i, calculated based on Eq. (3.4), L;

is the latent heat of vaporization of species i.

Appendix C6. Heat conductivity and dynamic viscosity of gaseous mixture
The thermal heat conductivity of a gaseous mixture was estimated as (Maqua,

2007)

omize = 21 (%29), (C.11)

and the dynamic viscosity of a gaseous mixture was estimated as (Maqua, 2007):
iz = Ty (F24), (C.12)
Sy = X1 x4y, (C.13)

2
[1+ MiMj/HjMi(Mi/Mj)1/4]
Aij = , (C.19)

8<1+Mi>
M;

where x; are molar fractions for species i, k; are thermal heat conductivities of

species i, y; are dynamic viscosities of species i and M; are molar masses of the

species i.

Appendix D. The Sturm-Liouville problem
In what follows, the details of the solution to Eq. (4.4) (Y(t,R)) for t > 0 and
0 <R < R; are given. Remembering the physical background of the problem, we will
look for a solution which is continuously differentiable twice in the whole domain.
Rewriting the boundary condition (4.5) in the form:

(6Yli ay ) aei(t)
arR D U

= . (D.1)

D

R=Rg4
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The initial condition is Y;(t = 0) = Y;0(R).
We look for the solution to Eq. (4.4) in the form:
Yi(&,R) = y(t,R) + €(®), (D.2)
where the subscript i at € is omitted to simplify the notation.
Having substituted (D.2) into Eq. (4.4) and the boundary condition (D.1) we

can rewrite this equation and the corresponding boundary and initial conditions in

the form:
ay _ 2%y 20y de(t)
a=D(GEtag) (D.3)
Wy _a _
(% Dly)|R=Rd = 0, (D.4)
Yle=o = Yiio(R) — €(0) = Y;;0(R) — € . (D.5)

Introduction of the new variable, following Sazhin et al (2004),
u(t,R) = y(t,R)R
allows the rewriting of Eq. (D.3) and the corresponding boundary and initial

conditions in the form:

ou az_u _ pae®
5= D, — R — (D.6)
(o _
ulpeo = (55 + 22 u)|R=Rd =0, D.7)
Ule=o = R(Y};0(R) — &) , (D.8)

where:

aRg

h0=—(1+D—l).

Note that the change of the variable from y to u leads to the need for a second
boundary condition at R = 0. The assumption that the solution is continuously
differentiable twice implies that y is finite everywhere in the domain 0 < R < R;.
Hence, the boundary condition (D.7) at R = 0. The solution to the problem (D.6) -
(D.8) for hy > —1 was earlier reported by Sazhin et al (2004). Here the focus will be
on the case hy < —1, which is directly relevant to the problem of diffusion of species
inside droplets.

We look for the solution to Eq. (D.6) in the form:

U = Y=o On (O vy (R), (D.9)
where v, (R) is the full set of non-trivial solutions to the equation:
9%v
—+pv =0, (D.10)
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subject to the boundary conditions:

Vlpeo = (Z—;+Z—Zv)|R=Rd =0. (D.11)

Eq. (D.10) with boundary conditions (D.11) is the well known Sturm-
Liouville problem. The first task is to find eigen values p for this problem. The cases

p=0,p<0andp >0 will be considered separately.

The Sturm-Liouville problem forp =0

For p = 0 the general solution to Eq. (D.10) can be presented as v = A+BR.
The condition v|z—y = 0 implies that A = 0. The boundary condition at R = R, leads
to the following equation B(1+hg) = 0. Since hy € (—o0, —1), the latter equation is
satisfied only when B = 0. This leads to the trivial solution v = 0 which is

disregarded in our analysis. Hence, Eq. (D.10) has no non-trivial solutions for p = 0.

The Sturm-Liouville problem for p <0

Assuming that p = —A? < 0 we write the general solution to (D.10) as:

v(R) = Acosh (A7-) + Bsinh (A1), (D.12)
where A and B are arbitrary constants.
The boundary condition at R = 0 (see (D.11)) implies that A = 0. The
boundary condition at R = R; leads to the following equation:
;;d(a coshA + hy sinh2) = 0. (D.13)
B in this equation is not equal to zero as we do not consider the trivial solution v = 0.

Hence, Eq. (D.12) can be re-written as:

tanh 1 = —hi . (D.14)

It is easy to show that for h, € (—o0, —1) Eq. (ED.14) has three solutions A = 0; +4,,
where A, € (0, +00), and it has no solutions for iy > —1. The solution A = 0 leads to
the trivial solution v = 0, which is disregarded in our analysis. The solutions A =
+1, lead to Solutions (D.12) (eigen functions) which differ only by the sign of B.
Since the value of the coefficient B is determined by the normalisation condition
only (see below), the solution A = —A, can be disregarded. Hence, we can conclude
that the solution of Eq. (D.14) gives only one eigen value A = A, > 0 and the

corresponding eigen function
vo(R) = sinh (4 I:id) (D.15)

where the normalisation leading to B = 1 has been chosen.

174



Appendices

The direct calculation of the integrals, taking into account Condition (D.14),

leads to the following expression for the norm of v:

R R h
Ivoll? = [ v3(RYAR = —Z2[1 + 25]. (D.16)
The Sturm-Liouville problem for p >0
Assuming that p = A2 > 0 we write the general solution to (D.10) as:

v(R) = Acos (A1) + Bssin (A7) (D.17)
where A and B are arbitrary constants.
The boundary condition at R = 0 (see (D.11)) implies that A = 0. The
boundary condition at R = R; leads to the following equation:
R%(Acoszuho sin1) = 0. (D.18)
B in this equation is not equal to zero as we do not consider the trivial solution v = 0.

Hence, Eq. (D.18) can be re-written as:

tan = —hi. (D.19)

0

As in the case p < 0 we disregard the solutions to this equation corresponding
to zero and negative 4. A countable set of positive solutions to this equation (positive
eigenvalues) A,, are arranged in ascending order:

O<Ai< <3< ...

The corresponding eigen function can be presented as:
. R
v, (R) = sin (An R_d)’ (D.20)

where the normalisation leading to B = 1 has been chosen as in the case p < 0.
The direct calculation of the integrals, taking into account Condition (D.19),

leads to the following expression for the norm of v, for n > 1:

R h
lvall? = [ v2(R)d = Rz—d[l +—°]. (D.21)

h2-22
The norm (D.21) differs from the norm chosen in Sazhin et al (2004) by the
factor Rd (see their Eq. (A4)). This does not affect the final solution.
Orthogonality of the eigen functions
The orthogonality of functions of v, (n = 1) was shown in Sazhin et al
(2004). To show that functions vy and v, (n = 1) are orthogonal, we need to

calculate the following integral:

I= [ sinh (,10 R%) sin (An :;d) dR, (D.22)
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where n > 1.
Using integration by parts twice when calculating the integral on the right
hand side of Eq. (D.22) can be rearranged to:
_ _Rafy _h - 5
I = T [smh Ag cos A, T cosh Ay sin,, + TR, I], (D.23)
where [ in the right hand side of this equation is the same as in (D.22).

Eq. (D.23) can be rearranged to:

Rg[sinhAg Agsinip
| =— Anlcoshdg Ancosip

1+(32)

Remembering Egs. (D.14) and (D.18), we can see that I defined by Eq. (D.24) is

] cosh Ay cosi,

(D.24)

equal to zero. This implies that functions v, are orthogonal for n = 0 and we can
write:

[ 0 (R)vm(RYAR = S lvn I, (D.25)
where n > 0 and m > 0, ||v,]|? is defined by (D.16) when n = 0 and (D.21) when
n=1.

Expansion of R in a Fourier series with respect to functions v,
Before using Eq. (D.9) for the solution of Eq. (D.6) the presentation of R as a

Fourier series with respect to functions v, should be presented:
R =020 Quun(R) , (D.26)

where

Qn = o5 Jy  Rua(R) AR, (D.27)

Direct calculation of the integrals in the right hand side of (D.27) leads to the
following explicit expressions for Q,:

1

™ ”2( ) (1 + hy) sinh 4, when n=0
Qn = L ° (D.28)
( ) (1+ hy)sinA, when n>1

llvnl?

Calculation of coefficients ©,(t) in Eq. (D.9)

Having substituted Expressions (D.9) and (D.26) into Eq. (D.6), the latter
equation can be rewritten in the form:

2in=0 On(OVn(R) = Dy Lyzo O (D)7 (R) — €'(t) Xinmo Qun(R) . (D.29)
where

de "

On = —% n(R)—dRz, ’(t)—d—EE €
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Since the expansion in the series with respect to v, (Fourier series) is unique, Eq.
(D.29) is satisfied only when it is satisfied for each term in this expansion.
Remembering that:

n_ (20 w_ (Mn)?
vy = (R_d) vy and v, = (R_d) v, (n>1),

It can be seen that this implies that:

@ () = D, (22) 00(t) - €00, (D.30)

0u(0) = ~D, () 0,(t) ~ €0, (D.31)
whenn > 1.

Egs. (D.30) and (D.31) need to be solved subject to the initial conditions for
0,(t) (n = 1). To find these initial conditions we substitute (D.9) into the initial
condition (D.8) and expand RYjo(R) into a Fourier series with respect to v,.
Remembering that the expansion with respect to v, is unique, this leads to the

following equation for ©,,(0):
0,(0) = qin — €(0)Qn, (D.32)

where @Q,, is defined by (D.27),

din = 5 Jy * RYuo (R (R)AR (D.33)

n = 0.
The solutions to Egs. (D.30) and (D.31) subject to the initial condition (D.32)

can be presented in the form:
0o(t) = exp [Dl l [qi0 — €(0) Qo]

—Qo J; < Pex [D, (- r)] dr, (D.34)
where n =0,
2 2
0u(t) = exp [ o (3) t] [Gin = €(0)Qs]

—Qu Jy “ex [ D (2 (t—r)] dr, (D.35)

where n > 1.
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The final solution
Having substituted (D.15), (D.20), (D.34) and (D.35), into (D.9), we can
present the final solution to Eq. (4.4), satisfying boundary condition (4.5) and the

corresponding initial condition in the form:

o= e+ H[ew [0 (2)” e a0 - x(@0] — @0 [ “exp [0 (2) (e -

o] dr|sinh (22) + i [exp [-00 (22) ¢ [gin — 103011 -

t de;(7)

Qn f; 2 exp [—Dl (2—3)2(1:—1)] dr] sin(/lnR%)}, (D.36)

where Q,, qin, 4o and A4, (n = 1) are defined by Egs. (D.28), (D.33), (D.14) and

(D.19) respectively; the subscript i at € has been restored.

Note that Expression (D.36) contains the term which exponentially increases
with time. This, however, will not lead to an unphysical solution to Eq. (4.4), since
this equation is valid only for 0 < ¥;; < 1. Once Y); reaches one of its limiting values
it will remain equal to this value.

If the Solution (D.36) is applied to individual short timesteps, the time

dei(t)

dependence of during this timestep can be ignored and it can be assumed that:

dGi(T) _ dGi(T)
dr  dr

M
M

t=0

This allows the simplification of Expression (D.36) to:

Y =
€ + %{[exp [Dl (2—3)2 t] [CIio — Qo (ei(O) + DI:E% 6{)] + Q DI:E% 6{] sinh (AO R%) +
521 [exp [0 (2) | [ai - Qule@)] - @u Eel] sin (L 2)L ©37)

If we ignore the time dependence of €; then Expression (D.37) can be simplified to:

Y =

€; +

1 10\ 2 . R o yY:

;{leXP [Dl (R—d) t] [9:0 — Qoei]l sinh (/10 E) + Xn=1 [eXP [—Dz (R—d) t] [9in —
Qnei]l sin (An R%)} (D.38)

The assumption that the time dependence of €; can be ignored during the

timestep will be used in my analysis. This allows us to build our calculations on Eq.

(D.38)

178



Appendices

Appendix E. Activity coefficients for the ethanol-acetone mixtures

The activity coefficient (y;) for any liquid mixture is related to the excess of
Gibbs free energy per unit mole (GF) by the following formula (Atkins and de Paula
, 2002):

1 9(uroralG”) (E.1)

Iny; =
Vi RyT ony;

where R,, is the universal gas constant, T is temperature in K, n; sorqr = X Ny Ny 18

the molar concentration of the i™ component in the liquid phase.

E _ npinyy anj, Bnyy dnpyng,
N rotalG” = RyT [ + - 2| (E.2)
ntngp lnpptng  nptng (ggtng)

where @ = 222 — 0.9897, f = 222 — 0.9483, § = == + 0.0759.

Having substituted (E.2) into (E.1) the following expressions for y; = ye, and
Y2 = Yqc are obtained:

y1=exp[xlz2 [a+2(B—a—5)Xz1+35X121]]} (E.3)

y2=exp[Xlz1[/3+2(Ul—B—5)Xlz +35X122]]

Expressions (E.3) were used in Eq. (4.10).

Appendix F. Approximations of the measured droplet velocities in Chapter 4

13
A experimental
12 A 4 o
——approximation

T 1 -
=

10 A

100 % ethanol
9 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Time (ms)
Fig. F1 The same as Fig. 4.1 but for pure ethanol droplets.
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13
A A experimental

12 - ——approximation
£
=

11 A

25% ethanol + 75% acetone
10 I I 1 1 1 T
0 1 2 3 4 5 6 7

Time (ms)

Fig. F2 The same as Figs. 4.1 and F1 but for 25% ethanol-75% acetone mixture
droplets.

13
A A experimental
121 ——approximation
g 11 A
=
10 A
50% ethanol + 50% acetone
9 T T T T T T
0 1 2 3 4 5 6 7
Time (ms)

Fig. F3 The same as Fig. F2 but for 50% ethanol-50% acetone mixture droplets.
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13
A experimental
——approximation
12 A
A

E
=

11 A

75% ethanol + 25 % acetone
10 T T T T T T
0 1 2 3 4 5 6 7

Time (ms)
Fig. F4 The same as Figs. F2 and F3 but for 75% ethanol-25% acetone mixture
droplets.

Appendix G. Sensitivity study of n-dodecane properties used in Chapter 6

The properties of n-dodecane used in calculations of Chapter 6 are the same as
reproduced by Sazhin et al (2005b). A sensitivity study based on the temperature
dependence of n-dodecane properties is to be shown in this Appendix. The
comparison is based on the properties presented in Appendix B and used in Chapter
3 (used by Deprédurand, 2009), the approximations of the properties that we got
from NIST website (National Institute of Standards and Technology)
http://webbook.nist.gov/chemistry/name-ser.html and the properties used by Sazhin

et al (2005b).

The liquid density of is approximated as Sazhin et al (2005b) (kg/m’):
p = 1104.98 + T(—1.9277 + T(0.003411 — 3.2851 x 107°T)).  (G.1)

The approximation of the liquid density reproduced from NIST website is:

p = —4.334713357484130 X 107® X T3 + 4.759233595856190 x 1073 X
T? — 2.488051596744170 x T + 1.180345044278340 x 103. (G.2)
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800
—— Sazhin et al (2005b)
—— NIST website
_ 700 - Deprédurand (2009)
£
N
< 600 -
Sy
500 -
400 I T 1 1 1

300 350 400 450 500 550 600
Temperature (K)

Fig. G1 The plots of liquid density (p;) of n-dodecane from different sources
(indicated in the curve) versus temperature.

The heat capacity of liquid n-dodecane is approximated as (Sazhin et al, 2005b)
(J/(kg.K)):

c; = 803.42 + T(5.076 + T(—0.0022124 + 0.000001673T)) . (G.3)

The polynomial approximation of the heat capacity of liquid n-dodecane as
reproduced from NIST website:

c; = 1.48202380136249 x 1077 x T* — 2.52261390358263 x 10~* X
T3 + 0.160796521364528 x T? — 41.4034976491586 X T +

5785.5370245135 . (G.4)
3600
—— Sazhin et al (2005b)
—— NIST website
PR 3200 Deprédurand (2009)
~
&
= 2800 A
<
2400 A
2000 . . . . .

300 350 400 450 500 550 600
Temperature (K)

Fig. G2 the same as Fig. G1 but for liquid specific heat, c;.
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The liquid viscosity of n-dodecane used is (Sazhin et al, 2005b) (Pa.s):
(G.5)

u=10"%x p x (exp(exp(15.1 — 2.6 X InT)) — 1.07).

The approximation of the liquid viscosity reproduced from NIST website:

1 = 1.406649218688310 x 10~17 x TS — 4.08104594410045 x 10~14 x T5 +
4.91879227224549 x 1011 x T* — 3.15596557014197 X 1078 x T3 +
1.13885766634288 x 1075 X T2 — 2.19828783711901 x 1073 X T +
0.178428752661574. (G.6)

0.0025
0.002 A —— Sazhin et al (2005b)
—— NIST website
s Deprédurand (2009)
« 0.0015 A

u (Pa
/

0.001 -
0.0005 \
550 600

0 .
300 350 400 450 500
Temperature (K)

Fig. G3 The same as Figs. G1 and G2 but for liquid viscosity, u
The liquid thermal conductivity of n-dodecane as used by Sazhin et al

(2005b) was fitted by the following equation:
49946 x 10719 x T3 +5.3841 x 1077 X T? —4.16075 X 10™* x T +
(G.7)

kl = -
0.22924116.

The approximation of the thermal conductivity of n-dodecane reproduced from NIST

website
k; = 8.13209121245732 x 1078 x T? — 0.000273057208008894 x T +

0.209151530311457 . (G.8)
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Fig. G4 The same as Figs. G1-G3 but for liquid thermal conductivity, ;.
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