

Stochastic modeling of primary atomization : application to Diesel spray.

J. Jouanguy & A. Chtab & M. Gorokhovski

Introduction.

Sacadura ,CORIA

Atomization: main phenomena:

Turbulence in liquid and gaz phase, cavitation, cycle by cycle variations

⇒ Deterministic description of such atomization is very diffcult task.

 \Rightarrow Stochastic approach

=> Application to primary atomization.

Floating cutter particles.

Time t1

The main asumption: scaling symetry for thickness.

1. Scaling symetry for thickness of liquid core.

- $r(x,t+dt) = \alpha r(x,t)$ $0 \prec \alpha \prec 1$ \downarrow $q(\alpha)$ Fragmentation
 intensity spectrum
- 2. Life time.
- 3. Ensemble of n particles.

Theory of Fragmentation under Scaling symetry (Gorokhovski & Saveliev 2003, Phys. Fluids).

Evolution equation

$$\frac{\partial f(r,t)}{\partial t} = v \int_{0}^{1} f\left(\frac{r}{\alpha}, t\right) q(\alpha) \frac{d\alpha}{\alpha} - v f(r,t) \quad \longrightarrow \quad \text{Knowledge of} \quad q(\alpha)$$

Fokker Planck type equation

$$\frac{1}{v} \frac{\partial f(r,t)}{\partial t} = -\langle \ln \alpha \rangle \frac{\partial}{\partial r} (r f(r,t)) + \frac{\langle \ln^2 \alpha \rangle}{2} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} (r f(r,t)) \longrightarrow \text{Knowledge of } \langle \ln \alpha \rangle \text{ and } \langle \ln^2 \alpha \rangle$$

$$\longrightarrow \text{Equation for the distribution function}$$

$$\longrightarrow \text{Log brownian stochastic process}$$

$$\underline{\text{Langevin type equation}} \longrightarrow \text{Equation for one realisation}$$

 $\langle l \rangle$

$$\mathcal{R} = v \langle \ln \alpha \rangle r + \sqrt{v \langle \ln^2 \alpha \rangle / 2} r \Gamma(t)$$

$$\frac{\langle \ln^2 \alpha \rangle}{\langle \ln \alpha \rangle} = \ln \left(\frac{r_c}{r_*} \right) \qquad r_c = \text{critical length scale}$$
$$\ln \alpha \rangle = CONST \cdot \ln \left(\frac{r_c}{r_*} \right) \qquad r_* = \text{typical length scale}$$

Identifiction of main parameters.

Transverse instability

(Reitz 1987)

Realization of stochastic process; « Stochastic floating cutter particles ».

Motion of particules

$$\frac{dx_{ip}}{dt} = U_{ip}$$

Experimental setup.

C. Arcoumanis, M. Gavaises, B. French SAE Technical Paper Series, 970799 (1997).

Gaz initial conditions:

Atmospheric conditions

 $T = 300^{\circ}K$ p = 1bar

Liquid initial conditions:

 $\rho_p = 0.8g / cm^3$ $R_{inj} = 0.009 cm$ $t_{inj} = 0.85 ms$ $m_{inj} = 3.2mg$ $T_{inj} = 300^{\circ}K$ $U_{inj}=U_{inj}(t)=0.260 m/s$

Probability to get liquid core; formation of discret blobs using presumed distribution:

Statistics of liquid core boundary

Injection of droplets

Radius:

$$f(r) = \frac{1}{r_{typ}} \exp\left(-\frac{r}{r_{typ}}\right)$$

 $r_{typ} \rightarrow$ Radius of the injector

Mass flow rate conservation

Motion of droplets

=> Standard KIVA procedure with velocity conditionned on the presence of liquid

 $u_p = U_{inj}(t)$ Initial
Initial $v_p = \frac{rad_p}{\tau} = \sqrt{K_{liquid}} \sqrt{\frac{\rho_g}{\rho}}$

Example of distribution of formed blobs.

Computed mean sauter diameter.

Centerline droplet mean axial velocity.

Symbols = experiment

Line = simulation

Centerline Sauter Mean Diameter (SMD).

Symbols = experiment

Line = simulation

Application to Air-Blast atomization.

Experiment => mean liquid volume fraction (Stepowski & Werquin 2001) Simulation => statistics of liquid core boundary

Drop injection and lagrangian tracking.

Typical size resulting from primary atomization

$$r_{typ} = \frac{1}{2} \left(\frac{\sigma}{\rho_g} W e_{cr} \right)^{\frac{3}{5}} \varepsilon^{-2/5}$$

Motion of the drops injected.

Lagrangian tracking : $\frac{dx_p}{dt} = u_p$ $\frac{du_p}{dt} = \frac{f}{dt}$

$$\frac{hu_p}{dt} = \frac{f}{St_p} \left(\langle u_g \rangle_l - u_p \right)$$

Modification of the gas velocity field:

$$\langle u_g \rangle_l = u_g (1 - R) + u_l R$$

 $f \rightarrow$ Drag coefficient , Stp \rightarrow particle Stokes number

 $P_l \longrightarrow$ probability of presence of liquid

Distribution of formed blobs.

Experiments (Lasheras & al 1998) Ug = 140 m/s

Ul = 0.13 m/s

Ul = 2.8 m/s

0.75

Examples of instantaneous distribution of formed droplets with instantaneous conditionned velocity of gaz and liquid core

0.928571 0.857143 0.785714

Computation in the far field.

Example of instantaneous distribution of formed droplets

ug = 140 m/s, ul = 0.55 m/s

Ug = 140 m/s

Conclusion.

- \Rightarrow Simple enginering model for primary atomization is proposed.
- \Rightarrow This allows to form the blobs in the near-injector region.

Future work.

⇒ Comparison with experiments in Brighton (trying different main mechanisms for fragmentation).