Skip to content

Carbon Nanotubes

Controlling porosity of buckypaper

  • Basic research, developing a new casting system for buckypaper that enables the control of the meso and small macropores between nanotubes.
  • We possess high-pressure mercury intrusion and liquid nitrogen adsorption analysis equipment.

High pressure mercury intrusion analysis of buckypaper

 

High-pressure mercury intrusion analysis of buckypaper, revealing pore size distribution and as a function of total intruded volume.

 

 

 

 

 

Controlling surface functionality of carbon nanotubes

  • Investigation of the acid functionalisation of carbon nanotubes, followed by back titration techniques to determine the control of distribution of surface acidic groups.
acidified carbon nanotubes

 

The presence of fulvic acids accounts for half the total surface acidic group density on acidified carbon nanotubes if not removed

 

 

 

 

Isolation of fulvic acids from acid-oxidised carbon nanotubes

  • The acidification of carbon nanotubes generates fulvic acids that are immobilised in situ on creation. These fulvic acids have shown toxic effects in fibroblast cell culture. Further information on tissue regeneration

polyaromatic hydrocarbon structure

Fulvic acids are easily derived from the acidification of carbon nanotubes and possess a polyaromatic hydrocarbon structure enabling fluorescence.

Toxicology and biocompatibility of carbon nanotubes and chemically modified derivatives

  • Studying the effects of nanocarbon-based biomaterials in site specific applications
Fibroblast growth Fibroblast growth

Fibroblast growth on carbon nanotube mats (buckypaper).

Recycling of carbon dioxide from critical fluids

  • International collaboration efforts with Toyo University in Japan has resulted in development of a potential recycling mechanism for carbon dioxide as a critical fluid.
  • Also looking at the spontaneous formation of nanoscale architecture from soluble materials in critical fluids.
Carbon columns

 

 

Formation of carbon columns from UV irradiation of CO2at its critical point

 

 

Scanning electron microscopy images of cluster structures

nanoropes and nanospirals

(a) Crystal surface before experiment

(b) Web-like structures formed after 24hrs in critical ethane (the temperature was set at 0.2k above the critical temperature)

 

(c) A straight fibre formed between two crystals

(d) Networks formed by fibres

 

 

(e) Sheets

(f) Spiral

 

Spontaneous formation of C60 nanoropes and nanospirals from C60 in critical benzene

Authored Publications

  • R.L.D. Whitby, K.S. Brigatti, I.A. Kinloch, D.P. Randall, T. Maekawa, "Novel Mg2SiO4 Structures”, Chem. Comm., 21, 2396, (2004).
  • R.L.D. Whitby, W.K. Hsu, Y.Q. Zhu, H.W. Kroto, D.R.M. Walton, “Novel Nanoscale Architectures: Coated Nanotubes and other Nanowires”, Phil. Trans. R. Soc. Lond. A, 362, 2127-2142 (2004).
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, K.S. Brigatti, H.W. Kroto,  D.R.M. Walton,” WS2 layer formation on multi-walled carbon nanotubes” Appl. Phys. A-Mater. Sci. Process., 76,527 (2003).
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, H.W. Kroto,  D.R.M. Walton, “WS2/C Nanocomposites Reviewed”, New Diamond and Frontier Carbon Technology, 13,7 (2003).
  • R.L.D. Whitby, W.K. Hsu, H. W. Kroto, D.R.M. Walton, “Tungsten disulphide coated multi-walled carbon nanotubes, review of the synthesis and characterisation”, Physical Sciences, Engineering and Technology -Recent Research Developments in Applied Physics, Vol. 5 (2002) Part II.
  • R.L.D. Whitby, W.K. Hsu, T.H. Lee, C.B. Boothroyd, H.W. Kroto,  D.R.M. Walton, “Complex WS2 nanostructures”, Chem. Phys. Lett., 359, 68 (2002).
  • R.L.D. Whitby, W.K. Hsu, H.W. Kroto,  D.R.M. Walton, “Conversion of amorphous WO3-x into WS2 nanotubes”, Phys. Chem. Chem. Phys., 4, 3938 (2002).
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, H.W. Kroto,  D.R.M. Walton, “WS2 coated MWCNs”, Chem. Phys. Lett., 359, 121 (2002).
  • R.L.D. Whitby, W.K. Hsu, P.K. Fearon, N.C. Billingham, I. Maurin, H.W. Kroto, D.R.M. Walton, C.B. Boothroyd, S. Firth, R.J.H. Clark,  D. Collison, “Tungsten disulphide coated multi-walled carbon nanotubes”, Chem. Mat., 14,2209 (2002).
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, P.K. Fearon, H.W. Kroto,  D.R.M. Walton, “Tungsten disulphide sheathed carbon nanotubes”, ChemPhysChem, 2, 620 (2001). (Front Cover)
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, P.C.P. Watts, H.W. Kroto,  D.R.M. Walton, “WS2-coated single-wall carbon nanotube bundles”, Appl. Phys. Lett., 79, 4574 (2001).

Co-Authored Publications

  • T. Fukuda, T. Maekawa, T. Hasumura, N. Rantonen, K. Ishii, Y. Nakajima, T. Hanajiri, Y. Yoshida, R. Whitby and S. Mikhalovsky, “Dissociation of carbon dioxide and creation of carbon particles and films at room temperature”, New J. Phys., 9, 321 ( 2007).
  • T. Fukuda, N. Watabe, R. Whitby, T. Maekawa, “Creation of carbon onions and coils at low temperature in near-critical benzene irradiated with an ultraviolet laser”, Nanotechnology, 18 415604 (2007).
  • K. Matsumoto, C. Sato, Y. Naka, A. Kitazawa, R.L.D. Whitby, N. Shimizu, “Neurite outgrowths of neurons with neurotrophin-caoted carbon nanotubes”, J. Biosci. Bioeng., 103, 216-220 (2007).
  • T. Fukuda, K. Ishii, S. Kurosu, R.L.D. Whitby, T. Maekawa, “Formation of clusters composed of C60 molecules via self-assembly in critical fluids”, Nanotechnology, 18, 145611 (2007)
  • C. Gao C, Y.Z. Jin, H. Kong, R.L.D. Whitby, S.F.A. Acquah, G.Y. Chen, H.H. Qian, A. Hartschuh, S.R.P. Silva, S. Henley, P. Fearon, H.W. Kroto, D.R.M. Walton, “Polyurea-functionalized multiwalled carbon nanotubes: Synthesis, morphology, and Raman spectroscopy”, J. Phy. Chem. B, 109, 11925-11932 (2005).
  • V. Stolojan, S.R.P. Silva, M.J. Goringe, R.L.D. Whitby, W.K. Hsu, D.R.M. Walton, H.W. Kroto, “Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling”, App. Phy. Lett., 86, art no. 063112 (2005).
  • Y.Z. Jin, Y.Q. Zhu, R.L.D. Whitby, N. Yao, R. Ma, P.C.P. Watts, H.W. Kroto, D.R.M. Walton, “Simple approaches to large-scale tungsten oxide nanoneedles”, J. Phys. Chem. B, 108, 15572 (2004).

Abstracts & Proceedings

  • R.L.D. Whitby, “Approaches towards nanoscale architecture”, 4th International Symposium on Bioscience and Nanotechnology, 11 (2006).
  • R.L.D. Whitby, “Nanoscale architecture”, 3rd International Symposium on Bioscience and Nanotechnology, 13 (2005).
  • R.L.D. Whitby, ”Nanoscale Architecture”, Mechanical Engineering Congress, 3-1, 146 (2003).
  • V. Stolojan, M.J. Coringe, S.R.P. Silva, R.L.D. Whitby, D.R.M. Walton, W.K. Hsu, H.W. Kroto, “Spatially resolved analysis of the electronic properties of WS2-coated carbon nanotubes using EELS in a TEM”, Proceedings Seventh Applied Diamond Conference, Third Frontier Carbon Technology, A35, (2003).
  • R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, P.K. Fearon, H.W. Kroto,  D.R.M. Walton, “Binary Phase of Layered Nanotubes”, Materials Research Society, Symposium Proceedings, 706, Z7.6.1 (2002).
  • R.L.D. Whitby, H.W. Kroto,  D.R.M. Walton, “Novel Nanoscale Materials”, Proceedings of 2nd Symposium on Frontier Carbon Technology”, 55 (2002).
  • T. Drewello, T. Brown, R. Whitby, M.A. Trikoupis, J.K. Terlouw,  P.R. Birkett, “Laser-induced aza-heterofullerene formation”, Abstr. Pap. Am. Chem. Soc., 221,201 (2001).

Highlighted Research

  • “Clean technologies clean up”, Channel Magazine, May-June 2007
  • Materials Chemistry Forum Newsletter, 8, (Winter 2005). (Front cover)
  • “Forsterite synthesis revisited”, Chem. Eng. News, 82, 32, (2004).