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Osiptsov method: The Fully
Lagrangian Approach



Osiptsov method
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Cloud motion: J
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Mass conservation:
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Expression for the number density ng:
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Osiptsov method
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The initial value problem for the calculation of J:
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e FLA predicts ny using a single cloud and identifies the infinitesimally
small scales of the critical points (caustics)

e The ODE for J summarises the history of the droplet cloud trajectory

e The critical points of 1/J do not degenerate the ODE for J
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FLA to turbulent flows



Challenges of implementing the FLA to turbulent flows

e Mass transport

e Momentum transport
e Turbulent diffusion modelling for inertia droplets

Filtered number density, integrability of the point-wise FLA number

density

Modelling of higher moments of number density



Current status



Mass transport

From the mass conservation equation in Eulerian form:
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by introducing the turbulent difussion flux jr
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Mass transport

Trasforming from the Lagrangian volume

D

Dt " a(x, t)dx = — ./\/L div (jr) dx

To the initial Lagrangian volume at t =0
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we obtain the FLA expression for the mass conservation in a filtered

turbulent flow field
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Turbulent diffusion modelling for inertia droplets
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The analogy to Brownian motion (Xia 2013) supports the use of the
Fick's law for the modelling of turbulent diffussion
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Turbulent diffusion modelling for inertia droplets
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Mass conservation:
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Momentum transport

The momentum trasport equation (Marble 1970):
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Assumming that djr/dt =0 and (U - V)ny = 175 (U - V)
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where p is the pressure term:

pi = ngVgiVaj— gV Va,



Momentum transport

Assessment of the importance of the pressure term
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Momentum transport

Dropping the pressure term

IngVy
at
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and applying the Reynolds transport theorem
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we obtain the simplified momentum transport equation having assummed
that djr/dt =0, (U~ V)ng = 75 (U—-V) and p=0
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Integrability of the point-wise FLA number density
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Inertia particles accumulate in Caustic regions where J = 0, for which the
number density is considered integrable (Osiptsov 1984)
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Attempting to expand the number density did not result to the
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Integrability of the point-wise FLA number density

Caustic

The FLA can be seen as a first order (linear) approximation of the
structure for the dispersed continuum
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Integrability of the point-wise FLA number density

Caustic

Introducing a second order description for the dispersed continuum
. o Lo
e(d) = J5 + 5Ho?.

the filtered number density defined in a finite volume R,
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Integrability of the point-wise FLA number density
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Integrability of the point-wise FLA number density
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To calculate the filtered number density we need to solve an ODE of the

Hessian too.
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Integrability of the point-wise FLA number density

For 3D cases we currently assume that the caustic formations are 1D

thus a primary direction can be defined for § = xg — x§ and € = x — x©
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Integrability of the point-wise FLA number density
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Modelling of higher moments of number density

Higher moments of the number density (Reeks 2014) in turbulent flow
fields can be predicted using the second order FLA
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Closure




Future prespectives

Use of the finite volume number density iy for the modelling of
higher moments for ny in turbulent flows

Extension of the second order FLA for the capturing of structues
with more than one dimension (enlogated or collapsed caustic
formations)

Introduction of more advanced models for the turbulent diffussion of
inertia droplets and particles

Account for the pressure term in the conservation of momentum

and/or the rate of the turbulent mass flux

Calculation of the Jacobian and the Hessian matricies for
non-Stokesian drag forces
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Clonclusion

e FLA provides a robust and efficient method to calculating the fine
structure of the dispersed continuum

e The Singularities of the FLA number density are important to
identify caustic formations and do not affect the solution

e The second order FLA predicts the value of ng on any finite volume
with size R, providing a link to the filtering width of the LES
framework, and converges to the standard FLA for R. — 0
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