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Effect of flashing

o Flash boiling: Intense nucleation occurring throughout the entire
liquid volume and usually caused by a rapid depressurization process
that leads to liquid superheat, i.e. p=psat yet T>Tsat.

o Jet atomization: Rapid disintegration of the liquid bulk into small
droplets; formation of a fine spray for flashing conditions

o Occurrence of flashing in nozzle flows is associated to:
- Reduced penetration of the jet exiting the nozzle
- Enhanced spray atomization efficiency
- Increased spray angle 
-Complex pressure distribution at the spray region (formation of 
shockwave system)
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Zhang et al., 2014: n-hexane 
flashing at Tinj=298-358K

(LIEF)

Lamanna et al., 2015: LOX flashing at Tinj=94K
(Shadowgraphy)

Exp. Investigations/Applications
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Operation under (partial) vacuum conditions
o Gasoline engines
o Rocket engines

Flashing is possible to occur in both applications yet 
the operation objectives are in fact opposite 

Common macroscopic flow features despite 
the difference in thermodynamic properties



Modelling Phase-Change
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Hertz-Knudsen Equation

Homogen. Relaxation Model
(HRM)

Linear mass-transfer rate
(Knudsen)
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Two-phase models: Finite mass-transfer rates associated with
empirical quantities

λ<1: departure from equilibrium

Aint, tot=n0 Abubble

Homogen. Equilibrium Model (HEM)
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Numerical Formulation/   
Bubble dynamics models

2D, transient flow simulations
o Mixture two-phase model: mechanical equilibrium between the phases
o Liquid: Tait equation of state
o Vapour: ideal gas  
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Mass-transfer term modelled

 SST k-ω turbulence model
 Implicit, coupled solver
 Second order schemes for momentum and turbulence advection
 Time step of 1μs corresponding to CFL numbers ~4-5 in the nozzle

Vapour fraction transport equation
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o Mixture compressibility:



Benchmark Geometrical Layouts
Moby Dick nozzle
o Water, steady problem 
o Tin=Tsat-2K
o Pin=20bar, Pout =5bar

Edwards’ pipe:
o Water, transient problem
o Tin=502K
o Pin-Pout =70bar

Reitz nozzle:
o Water, steady problem 
o Tin=360-427
o Pin =7.97bar, Pout=1bar
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Moby-Dick Nozzle (1)
o Flow acceleration at the divergent

region → expansion of initially
choked two-phase flow

o Supersonic flow downstream the
throat

o Almost full liquid vaporization has
occurred at an axial distance
X=0.65m

Hertz-Knudsen model, λ=0.1

Problem
Statement 

Phase-
Change Rate

Benchmark
cases

LOX
properties

Concluding 
remarks

Mach number distribution



Moby-Dick Nozzle (2)
Pressure/VOF distribution at the nozzle axis

o Adequate agreement achieved by all models. 

o Higher mass transfer rate accompanied by increased in-nozzle pressure

o Shockwave predicted by all models however at different locations 
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Effect of nucleation-site density
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Variable nucleation site density (Senda et al., 1994)

o Excellent agreement obtained for λ=1 (thermodynamic-equilibrium)

o No clear distinction of the effects of nucleation-site density and actual
thermodynamic conditions on phase-change rate
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Reitz nozzle(1)

T=427K, HRM (Θ=6.51∙10-4s)

Phase field for T=427K

o Liquid core could evident at the nozzle outlet and severe atomization sets in
immediately downstream the nozzle outlet

o Mass flow rate decreases due to the increasing part of nozzle cross section
occupied by vapour
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Edwards’ pipe (1)
Velocity field (Hertz-Knudsen, λ=0.1)

o Flow acceleration towards the pipe outlet as the phenomenon evolves

o Increased cone angle due to flow over-expansion
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Edwards’ pipe (2)
Pressure at the pipe left wall/Vapour vof at the pipe mid-section

 Knudsen and Hertz-Knudsen equations produce accurate predictions

 Liquid vaporization caused due to rarefraction wave

 Vaporization occurs at a sharp interface reaching left wall at ~0.5 s

 Calibration of HRM parameters for externally flashing flows needed
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Conclusions
o Accurate predictions of Hertz-Knudsen models for all examined

cases. Possible HRM tuning for mass transfer through sharp
interphase

o Information of nucleation-site density is vital for accurate
predictions.

o Flashing within the nozzle is accompanied with choked flow and
increased spray cone angle of the expanding jet.

o LOX thermodynamic properties successfully predicted using
Helmholtz EoS; Good agreement with NIST REFPROP

o Preliminary simulations verified the robustness of the implemented
methodology for predicting flashing of cryogenic fuel
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Open Questions/ Future research
o Clear identification of the flashing regimes, i.e. internal or external

and effect of orifice manufacturing characteristics (L/D, roughness
etc.)

o Characterization of the inception-point distribution in the liquid
bulk- Methods to avoid model tuning

o Effect of heat-transfer rate & Jacob number on mass-transfer rate

o Explicit correlation between the expanding-jet characteristics
(velocity, cone angle, droplet size) and the phase-change rate within
the nozzle

o Experimental studies needed to designate HRM coefficients            
for hydrocarbon and cryogenic fuel
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