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Effect of flashing

O Flash boiling: Intense nucleation occurring throughout the entire
liquid volume and usually caused by a rapid depressurization process
that leads to liquid superheat, i.e. p=p,, yet T>T,.

O Jet atomization: Rapid disintegration of the liquid bulk into small
droplets; formation of a fine spray for flashing conditions

O Occurrence of flashing in nozzle flows is associated to:
- Reduced penetration of the jet exiting the nozzle
- Enhanced spray atomization efficiency

- Increased spray angle
-Complex pressure distribution at the spray region (formation of

shockwave system)
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SR : Exp. Investigations/Applications
Operatlon under (partlal) vacuum conditions
O Gasoline engines Flashing is possible to occur in both applications yet
O Rocket engines the operation objectives are in fact opposite
Zhang et al., 2014: n-hexane
flashing at T,,=298-358K Common macroscopic flow features despite
(LIEF) the difference in thermodynamic properties
Pa/Ps Liquid Vapor
./\'\.

Lamanna et al., 2015: LOX flashing at T; .=94K
(Shadowgraphy)
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Modelling Phase-Change
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Two-phase models: Finite mass-transfer rates associated with
empirical quantities

Linear mass-transfer rate - =
(Knudsen) R = CepapAint,tor X1 P1AP Aint, tot=No Apubble
Hertz-Knudsen Equation R = ADsac =) p<i: departure from equilibrium
V2R Tiny
" v hmix - hsat,l
. - Y-V * h,.,—h
Homogen. Relaxation Model R = —pmixT —~ sat,y — ! 'sat,|
(HRM) O=Oya"g"

B (p/ s 1|+ P P2, D

sat,L

Homogen. Equilibrium Model (HEM) P(@.D =1 peu (D) p.(M<p<p, (T)
PRT, p<p,,(T)
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Numerical Formulation/

Bubble dynamics models
2D, transient flow simulations
O Mixture two-phase model: mechanical equilibrium between the phases
O Liquid: Tait equation of state
O Vapour: ideal gas

, — 1 1-a a om(1 1
O Mixture compressibility: —= —+ > — ——
P P1C; PvCy 519 Pv Pi

Vapour fraction transport equation

ola :
M -+ V(apvu) = R =—————b | Mass-transfer term modelled

ot

» SST k-w turbulence model

» Implicit, coupled solver

» Second order schemes for momentum and turbulence advection
» Time step of 1us corresponding to CFL numbers ~4-5 in the nozzle
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Moby Dick nozzle

O Water, steady problem
O T;,=Tsat-2K

O P,,=20bar, P_, =Sbar

out

Reitz nozzle:

O Water, steady problem
O T,,=360-427

o P,,=7.97bar, P, ,=1bar

out

Edwards’ pipe:

O Water, transient problerp
O T,,=502K
O PIn -P,,. =70bar

ﬂ
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Hertz-Knudsen model, A=0.1

Y [m]

Moby-Dick Nozzle (1)

Flow acceleration at the divergent
region -» expansion of initially
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X [m]

5

choked two-phase flow

O Supersonic flow downstream the
throat

Almost full liquid vaporization has
occurred at an axial distance
X=0.65m

Mach number distribution
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EE e Moby-Dick Nozzle (2)
Pressure/VOF distribution at the nozzle axis

O Adequate agreement achieved by all models.

O Higher mass transfer rate accompanied by increased in-nozzle pressure
O Shockwave predicted by all models however at different locations
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2 %Mz Effect of nucleation-site density
Variable nucleation site density (Senda et al., 1994)

O Excellent agreement obtained for A=1 (thermodynamic-equilibrium)

O No clear distinction of the effects of nucleation-site density and actual
thermodynamic conditions on phase-change rate
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Phase field for T=427K
O Liquid core could evident at the nozzle outlet and severe atomization sets in
immediately downstream the nozzle outlet

O Mass flow rate decreases due to the increasing part of nozzle cross section

occupied by vapour
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et e e Edwards’ pipe (1)
Veloutv field (Hertz Knudsen A=0.1)

O Flow acceleration towards the pipe outlet as the phenomenon evolves

O Increased cone angle due to flow over-expansion
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Benchmark
cases

Edwards’ pipe (2)

Pressure at the pipe left wall/Vapour vof at the pipe mid-section

Knudsen and Hertz-Knudsen equations produce accurate predictions

Liquid vaporization caused due to rarefraction wave

Vaporization occurs at a sharp interface reaching left wall at ~0.5 s

Calibration of HRM parameters for externally flashing flows needed
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Conclusions

O Accurate predictions of Hertz-Knudsen models for all examined
cases. Possible HRM tuning for mass transfer through sharp
interphase

O Information of nucleation-site density is vital for accurate
predictions.

O Flashing within the nozzle is accompanied with choked flow and
increased spray cone angle of the expanding jet.

O LOX thermodynamic properties successfully predicted using
Helmholtz EoS; Good agreement with NIST REFPROP

O Preliminary simulations verified the robustness of the |mplementgd
methodology for predicting flashing of cryogenic fuel
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o o ".'.Open Questions/ Future research

Clear identification of the flashing regimes, i.e. internal or external
and effect of orifice manufacturing characteristics (L/D, roughness
etc.)

Characterization of the inception-point distribution in the liquid
bulk- Methods to avoid model tuning

Effect of heat-transfer rate & Jacob number on mass-transfer rate

Explicit correlation between the expanding-jet characteristics
(velocity, cone angle, droplet size) and the phase-change rate within
the nozzle

Experimental studies needed to designate HRM coefficients
for hydrocarbon and cryogenic fuel




