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Methodology: The numerical simulation tools are: 400 A T surface
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where thermal diffusivity * = c,p, Isdescribed by Eqns 3.72 of [1]).
Boundary conditions are based on convective heat flux from gas at temperature Tg.

Replacing Tg by Teff accounts for evaporation:

Terr = Ty + plL:dE Eqn 4.30 of [1].
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Further extension for a blackbody droplet reads: Teff = Tg + 2L th + 2 ’;l“d

3. SHRL_ ST code: This is SHRL in-house code for semi-transparent fuel droplets with the

ETC model. Temperature of liquid inside the droplet for semi-transparent droplets is
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governed by g—i =k (aTZ + %a—;) + P(R)

where P(R) describes heating by thermal radiation. It is approximated by
P(R) = 3ac RY71 64 /cbp, (Eqn3.94 of [1])

with empirical parameters a and b depending on external radiation temperature

Reference: [1] Sazhin, S.S. (2014) Droplets and Sprays, Springer-Verllag

Operating parameters for numerical simulations:
 Droplets of initial radii 6 pm, 12 pum and 45 um
 Fuel temperature in the range 280 K — 360 K

« Radiation temperature of 1000 K — 2200 K

« Gas temperature in the range 400 K — 800 K

 Droplet velocity varies from zero to 141 m/s

SHRL_ ST code: Fuel T =300 K, gas T =545 K, pressure = 0.1 MPa.
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320 Comparison of evaporation times (ms) by the SHRL_BB and SHRL_ST codes.
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Heating and evaporation of n-heptane droplet under ETC model in the absence of thermal radiation

Droplet diameter is 90 pm, gas T = 545 K, gas pressure 0.9 MPa, stationary droplet with initial T = 300 K. ‘ Conclusions:

Three numerical modelling tools: ANSYS FLUENT CFD, SHRL_ST and

Semi-transparent n-heptane droplet vs multicomponent gasoline blackbody droplet. ‘ SHRL_BB were used for simulations. The resuits show that

» Decrease in evaporation times is more significant for larger droplets
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than for smaller fuel droplets
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In both cases, a) and b), droplet initial radius is 12 um, gas T = 545K and pressure is 0.9MPa. The ETC

model is taken for both cases. Values of thermal radiation temperatures are shown near the curves. better understanding of micro-explosion phenomena in droplets
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