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Problem Statement

Current mathematical models of
sprays use spherical approximation
for droplets.




Problem Statement

However...

Current mathematical models of
sprays use spherical approximation
for droplets.




Problem Statement

Can the spherical approximation of droplets be used?

We will consider heating and evaporation of a single non-
spherical droplet and compare it with a spherical one.
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Problem Statement

Heating and evaporation of a single non-spherical droplet.

Droplet |




Mathematical Modelling

Droplet dynamics: Vapour dynamics:

Phase-field method — Mixture Model of two
liquid and gas phases — vapour and air

It is hard to couple these two models: we have three phases




Model simplifications

1. Approximate droplets by
spheroids: 3D => 2D

2. Find temperature and vapour
distribution for a steady state assuming
that droplet shape is fixed and droplet
temperature at the surface is uniform.

3. Use exact solution from for vapour in
the boundary condition to calculate the
reassertion of droplet surface and
distribution of T inside the droplet.

2 evaporation




Additional simplifications

We consider only slightly deformed
droplets to guaranty that
temperature gradient in radial
direction is much larger than in the
tangential direction.

We ignore:

« Droplet swelling (changes of the droplet volume due to
changes in temperature);

o Surface tension and resulting oscillation of the droplet;




Previous models

S. Tonini, G.E. Cossali (2014) proposed a mathematical
model for non-spherical droplets:

Approximations:

E=a,/a,

 Problem is solved outside the droplet
« Droplet shape is fixed
« Temperature Is constant on the droplet surface




Toninl & Cossall model

The steady-state evaporation of a spheroidal
drop can be analysed through the solution to
the species balance equations:

species (air or vapour)

mass diffusivity

v;(pUp — pD,V;9%) = 0 0% = p%/p..

Air and vapour can move due to total density

convection and diffusion




Toninl & Cossall Results

In the spheroidal coordinate system
the problem was solved analytically:

Evaporation rate of the droplet:

My, = C(e)ln

1_<pc

T O

evaporation factor mass fraction

Ce)=1 at =1




Toninl & Cossall Results

Non-spherical droplets evaporates faster.
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Non-physical approximations:
« Droplet shape is fixed
e Temperature Is constant inside and at the surface of

the droplet




Model Development

Approximations:

e S. Tonini, G.E. Cossali (2014) mathematical
model for non-spherical droplet for the gas
phase outside the droplet

* Droplet shape changes (evaporation), but
remains spheroidal

« Temperature Is not constant inside and on
the surface of the droplet




Mathematical Model

T— temperature: :
Heat capacity

Tonini & aT
Cossali [ 6" — V(kVT)

solution
Droplet density Thermal conductivity

Boundary conditions at the drop surface:

—n(—kVT) = h(T, — T) — g J

Normal to the surface fj Heat transfer Wl Latent Heat of
coefficient vaporisation

@ = —U(T,x,,2) Defined by S Tonini, G.E. Cossali
(2014) solution for the gas phase




Model parameters

Temperature [K] Temperature [K]

T=700K
P=30bar




Results: Prolate droplet
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Results: Oblate droplet
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Results
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Results. Droplet evaporation time
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Parameter sensitivity analysis

Relative difference of the droplet evaporation time
for spherical and deformed droplets
f‘tlif'f — [f'r;ph - fdufj;"‘;tsph . ]-UU?E




Conclusion

Local temperatures can vary noticeably along the droplet
surface.

Droplet heating i1s shown to be more intense in the
regions with greatest curvature.

Droplet becomes more spherical.

The effect of droplet non-sphericity on the evaporation
time of droplets was shown to be relatively small for the
range of parameter values under consideration.
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