

Spatial-temporal measurement of fragments and ligaments in secondary atomization via high-speed DIH

Longchao Yao^{a, b}, Xuecheng Wu^a, Jun Chen^b, Paul E. Sojka^b, Yingchun Wu^a

^a State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 China ^b School of Mechanical Engineering, Purdue University, West Lafayette 47907 USA

Background

Liquid atomization has wide applications in liquid fuel combustion, agriculture spray, food processing, etc. Secondary atomization determines the final size and velocity.

Spray in engine

Secondary atomization

We = 25, multi-mode

 $\rightarrow 0$ $\bigcirc \vdots & \longrightarrow & 0 \vdots \vdots & \vdots \\ & & & & 0 & \vdots & \vdots \\ & & & & & & 0 & \vdots & \vdots \\ & & & & & & 0 & & 0 & \vdots \\ & & & & & & 0 & \vdots & \vdots \\ & & & & & & 0 & \vdots & \vdots \\ & & & & & &$ $\mathbf{\tilde{c}} \longrightarrow \mathbf{\hat{c}} \longrightarrow \mathbf{\hat{c}}$

Vibrational, We $< \sim 11$ Bag, ~11<We<~35

Multimode, ~35<We<~80 Shearing, ~80<We<~350 Catastrophic, We>~350

Breakup regimes

Motivation

Quantify 3D fragments and ligaments and their evolution in during secondary atomization.

- In bag and multi-mode (bag-stamen) breakup
 - Establish onset of secondary atomization
 - Two stages: bag rupture and rim disintegration
 - Droplet size and velocity are important parameters
 - Complicated 3D rim

Weber number:
$$We = \frac{\rho_{\rm g} {u_0}^2 d_0}{\sigma}$$
,

 $ho_{
m g}$ – gas density u_0 – relativ

relative velocity

 d_0 – drop diameter σ – surface tension

Experimental setup

4

A tilted illumination to reduce overlap
 Use the bag burst point as start of time t₀ and origin of coordinates.

Frame rate: 20 kHz Ethanol drop, $\sigma = 0.0244$ N/m, $\rho_a = 1.177$ kg/m^{3,} $d_0 = 2.34 \pm 0.02$ mm We = 11, bag breakup, We = 25 for multi-mode breakup in experiments

Method: Digital in-line holography (DIH)

Recording

$$I_{\rm H} = |E_{\rm O} + E_{\rm R}|^2 = I_{\rm O} + I_{\rm R} + E_{\rm O}E_{\rm R}^* + E_{\rm O}^*E_{\rm R}$$

 $E_{\rm O}$ is object wave that is scattered by particles (at the recording plane) $E_{\rm R} = 1$ is undisturbed reference wave

Reconstruction

z location is not vulnerable to edge errors.

Method: Ligament extraction

5

O

Steps to extract ligaments and fragments

Locate z position of local section as an individual particle

Stitch local sections to be an entire ligament

Results: Calibration

- Diameter error is about ± 1 pixel
- Raw z location error is about ± 10 pixel
- Robust local linear regression is applied to smooth the z position and remove outlier.

Results: Ligament extraction

holograms

 $x_1 (mm)$

 $x_1 (mm)$

5 10 15 x_1 (mm)

Rim/ligaments are reconstructed and 3D visualized during 5ms after bag burst (15 selected frames)

Results: Fragment extraction

A magnifying lens is used for droplets at bag burst

Bag burst:

- Small droplets (< 30μm)
- 3.64X (5.5µm pixel size)
- Within ~0.5ms after tip burst.
- Higher velocity (up to 9m/s)

Bag fragmentation:

- Larger droplets (50-300µm)
- 1X (20μm pixel size)
- 0.5-4ms after tip burst.
- Lower velocity (< 5m/s)

Rim breakup:

- Even larger droplets (may be $>500\mu m$)
- Not detailed in our study

Results: Fragment size

Results: Fragment evolution

- Droplets move faster at bag burst, slower at bag fragmentation. Even negative velocities appear because of back propagation of the bag wall.
- Velocity shows strong relevance to time and weak relevance to diameter. The time span is too short for droplet acceleration with drag force. Initial velocity plays a more important role.
- Higher magnification is able to detect more smaller droplets but include less larger droplets. Lower magnification exclude droplets smaller than 50µm. Thus there is a diameter gap.

- Ligament and fragment volume is relatively stable before rim breakup.
- Rim/ligament volume transfers to fragments after rim breakup.
- Total volume of about the initial volume despite fluctuation caused by uncertainty

Results: Multi-branch ligaments

We = 25, Multi-mode breakup

- Ligament criteria: Major axis length > 2mm, aspect ratio > 5 or solidity < 0.5</p>
- Remove the spurs
- Separate branches and save them
- Deal with each branch and stitch them together

Measurement of multi-branch ligament is an improvement. 15

Results: Multi-branch ligaments

Volume evolution is studied from 32 frames during 1.94ms

Relatively large uncertainty (up to 17%) is probably due to

- Bag residues may be recognized as compact ligament
- Overlap problem
- **5%** size error will lead to \sim 14.5% volume error

Conclusions

- 1. 3D morphology and evolution of rims and ligaments in bag and multi-mode breakup is measured using an automatic algorithm.
- 2. With a small tilted angle, overlap problem is to some extent avoided.
- 3. Time-resolved size and velocity of fragments are analyzed by using two magnification for different stages.
- 4. Volumes of rim/ligament and secondary droplets add up to nearly 100%, despite some fluctuation caused by measurement uncertainty.
- 5. Analytical work is expected to explain the interesting results (e.g. multi-modal size distribution and back-propagation of fragments) in the future.

Thank You for Your Attention!