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A conventional laminar vortex ring model is generalised by assuming that the time
dependence of the vortex ring thickness ` is given by the relation ` = a tb, where a is a
positive number, and 1/4 6 b 6 1/2. In the case when a =

√
2ν, where ν is the laminar

kinematic viscosity, and b = 1/2, the predictions of the generalised model are identical
with the predictions of the conventional laminar model. In the case of b = 1/4 some of
its predictions are similar to the turbulent vortex ring models, assuming that the time
dependent effective turbulent viscosity ν∗ is equal to ``

′

. This generalisation is performed
both in the case of a fixed vortex ring radius, R0, and increasing vortex ring radius. In
the latter case, the so called second Saffman’s formula is modified. In the case of fixed
R0, the predicted vorticity distribution for short times shows a close agreement with a
Gaussian form for all b and compares favorably with available experimental data. The
time evolution of the location of the region of maximal vorticity and the region where
the velocity of the fluid in the frame of reference moving with the vortex ring centroid is
equal to zero, is analysed. It is noted that the locations of both regions depend upon b;
the latter region being always further away from the vortex axis than the first one. It is
shown that the axial velocities of the fluid in the first region are always greater than the
axial velocities in the second region. Both velocities depend strongly upon b. Although
the radial component of velocity in both of these regions is equal to zero, the location
of both of these regions changes with time. This leads to the introduction of an effective
radial velocity component; the latter case depends upon b. The predictions of the model
are compared with the results of experimental measurements of vortex ring parameters
reported in the literature.
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1. Introduction

Vortex rings have been widely observed as persistent slowly decaying structures (Saffman
(1992)). These structures provide a relatively simple flow field, accessible to experimen-
tal, numerical and theoretical studies. The importance of vortex rings was emphasised by
Saffman (1992) who wrote: ‘This commonly known phenomenon exemplifies the whole
range of problems of vortex motion’. The properties of the vortex rings have been stud-
ied for over a century both theoretically and experimentally (Helmholtz (1858), Lamb
(1932), Phillips (1956), Norbury (1973), Kambe & Oshima (1975), Saffman (1992), Shar-
iff & Leonard (1992), Lim & Nickels (1995)). Recent developments on the modelling
side include Stanaway, Cantwell & Spalart (1988), Rott & Cantwell (1993a), Rott &
Cantwell (1993b), Mohseni & Gharib (1998), Kaplanski & Rudi (1999), Kaplanski & Rudi
(2005), Shusser & Gharib (2000), Fukumoto & Moffatt (2000), Mohseni (2001), Mohseni
(2006), Linden & Turner (2001), Fukumoto & Kaplanski (2008).

Classical vortex rings are generated by a moving piston, pushing a liquid column of
length L through an orifice or nozzle of diameter D. The flow separates at the edge of
the orifice and a cylindrical vortex sheet forms and rolls up into a vortex ring structure.
This structure can be laminar or turbulent depending upon the method of generation
and the ambient conditions. Also, the mushroom-like patterns resembling classical vortex
ring motion are often observed in nature and industry, including gasoline engines. Such
structures can be formed in a fluid when localised forces are applied to the fluid during
a short period of time (e.g in the injection of gasoline in modern engines). In this case,
jets with vortex ring structures at the spray periphery can be produced. There is some

similarity between the mathematical tools used to describe these structures and those of
classical vortex rings.

Saffman (1970) derived an explicit formula for the translational velocity (axial velocity
of the centroid as discussed later) of thin-cored laminar vortex rings of radius R0 in the
form:

Vx =
Γ0

4πR0

[

ln

(

8R0√
4νt

)

− 0.558 + O

(√
2νt

R0
ln

(

2νt

R2
0

)

)]

, (1.1)

where ν is the fluid kinematic viscosity, Γ0 is the initial circulation of the vortex ring
which is conserved. The vorticity distribution inside this ring corresponds to the Lamb-
Oseen vortex filament (Lamb (1932)). This formula is valid at the initial stage of the
vortex ring development.

The description of the final stage of the laminar viscous vortex ring decay can be based
on the Phillips (1956) self-similar solution for vorticity distribution and the corresponding
streamfunction. In this case Rott & Cantwell (1993a) showed that in the limit of large
times the translational velocity of vortex rings can be described by the following equation:

Vx =
M

4π2R3
0

[

7
√
πR3

0

30(2νt)3/2

]

, (1.2)

where M is the momentum of vorticity per unit density.
An approximate, linear first-order solution of the Navier-Stokes equation for the axi-

symmetric geometry and arbitrary time was reported by Kaltaev (1982), Berezovski
& Kaplanski (1995), Kaplanski & Rudi (1999). Based on this solution, Kaplanski &
Rudi (2005) derived an expression for the translational velocity of the vortex ring for
arbitrary times. In the limit of small and large times this expression reduces to those
described by Equations (1.1) and (1.2) respectively (Kaplanski & Rudi (1999), Fukumoto
& Kaplanski (2008)). For the initial stage of vortex ring development, its predictions show
good agreement with the results of numerical simulations reported by Stanaway, Cantwell
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& Spalart (1988) for Reynolds numbers (defined by the ratio of the circulation to the
kinematic viscosity) up to 400 (Fukumoto & Kaplanski (2008)). The effects of these
numbers upon the numerical results was shown to be minimal.

The main limitation of the models mentioned above is that they are based upon the
assumption that the vortex ring radius R0 remains constant. Saffman (1970) attempted
to relax this assumption and using simple dimensional analysis, derived an alternative
formula for Vx of the form:

Vx =
M

k (R0 + k
′

νt)
3/2

, (1.3)

where k and k
′

are fitting constants. Weigand & Gharib (1997) have shown that an
appropriate choice of these constants led to a close match to Equation (1.3) with their
original experimental data and the results of rigorous numerical analysis by Stanaway,
Cantwell & Spalart (1988). Both experimental data reported by Weigand & Gharib
(1997) and the model by Kaplanski & Rudi (2005) predict the Gaussian distribution of
the vorticity in the vortex ring. Also, it was shown that the formulae obtained in the limit
of small vortex ring Reynolds numbers can be applicable for the description of vortex
rings with realistic values of these numbers (see Fukumoto & Kaplanski (2008)).

In contrast to the aforementioned laminar vortex ring models, the theory of turbulent
vortex rings is far less developed. To the best of the authors’ knowledge, the first attempt
to investigate turbulent vortex ring flow structures was made by Lugovtsov (1970) who
based his analysis on the introduction of the time dependent, turbulent (eddy) viscosity:

ν∗ ∝ ``
′

, (1.4)

where ` is the diffusivity scale of the ring core (cf. Lavrentiev & Shabat (1973), Ko-
vasznay, Fujita & Lee (1974)). In our paper we assume that ` =

√
2νt in the case of

laminar vortex rings. This definition of ` is different from the definitions used by some
other authors. For example, Saffman (1970) defined ` =

√
4νt. Equation (1.4) made it

possible to describe vortex rings as self-similar structures. However, the comparison of
this model with experimental observations proved inconclusive (Maxworthy (1972), Max-
worthy (1974), Maxworthy (1977), Glezer & Coles (1990), Sazhin, Kaplanski, Feng et al
(2001), Cantwell (2002)). Using Equation (1.4), Lugovtsov (1970) and Lugovtsov (1976)
developed a turbulent vortex ring model with turbulent viscosity ν∗ and ` ∝ t1/4. Further
support of this model was provided by Sazhin, Kaplanski, Feng et al (2001) who applied
it to modelling of turbulent vortex ring structures observed in gasoline engines. At the
same time the model suggested by Lugovtsov was based upon a number of restrictive
assumptions; the applicability of which to realistic physical conditions was not evident.
The link between this model and the models described by Kaplanski & Rudi (1999) and
Kaplanski & Rudi (2005) was not clear. The integral properties of the turbulent vortex
rings, such as circulation, kinetic energy and translational velocity were not derived. As
a result, the applicability of the model to realistic physical conditions was not at first
evident. This was therefore the main driving force behind this paper where an attempt
is made to generalise the laminar and turbulent vortex ring models by assuming that
` ∝ tb, where 1/4 6 b 6 1/2. This model is expected to incorporate both the laminar
and turbulent vortex ring models described earlier for the limiting values of b.

The basic equations and approximations of the new model are described in Section
2. The analytical solutions of the equations, describing this model, are presented and
discussed in Section 3. In Section 4 the limiting cases of the solutions of these equations
for long and short times are discussed. The solutions are validated against experimental
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data, available in the literature, where possible. The results are presented in Section 5.
The main results of the paper are summarised in Section 6.

2. Basic equations and approximations

The general vorticity equation for incompressible flows follows from the Navier-Stokes
equation and can be presented in the form (e.g. Panton (1996)):

Dζ

Dt
= ζ · ∇v + ν∇2ζ, (2.1)

where ζ = ∇× v is the vorticity, ν is the kinematic viscosity.
Assuming that the flow is axi-symmetric, when the vector ζ has only one azimuthal

component ζ, Equation (2.1) can be simplified to (Batchelor (1967)):

∂ζ

∂t
+
∂(vxζ)

∂x
+
∂(vrζ)

∂r
= ν

[

∂2ζ

∂x2
+
∂2ζ

∂r2
+

1

r

∂ζ

∂r
− ζ

r2

]

, (2.2)

where the meaning of r and x axes is shown in Fig. 1.
The streamfunction Ψ is introduced as:

vx =
1

r

∂Ψ

∂r
+ Vx, vr = −1

r

∂Ψ

∂x
, (2.3)

where Vx is the velocity of the centroid at r = 0 and

x = x0 =

∫∞

0

∫∞

−∞
2πrxζdxdr

∫∞

0

∫∞

−∞
2πrζdxdr

,

Vx = dx0(t)/dt. From the definition of ζ follows the equation:

∂2Ψ

∂x2
+
∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
= −rζ. (2.4)

Equations (2.2)-(2.4) describe any axi-symmetric flow, including vortex rings. In the
latter case, physically meaningful solutions of these equations should satisfy the following
boundary conditions: both ζ and Ψ are equal to zero at r = 0 and approach to zero when√
x2 + r2 → ∞.
Following Berezovski & Kaplanski (1995), we introduce the following dimensionless

variables and parameters:

σ =
r

`
, η =

x− x0(t)

`
, θ =

R0

`
, Φ =

Ψ

ζ0`3
, ω =

ζ

ζ0
, ζ0 = At−λ,

where R0 is the free parameter of the model which is usually identified with the initial
radius of the vortex ring (the value of r at which the axial velocity in the frame of
reference moving with Vx reaches its local minimum at η = 0)), the length ` can be
identified with the thickness of the vortex ring as shown in Fig. 1, the parameter A can
be identified with the initial vorticity at an a priori chosen location. As mentioned in
the Introduction, in the case of a laminar vortex ring it was assumed that ` =

√
2νt

(Berezovski & Kaplanski (1995)). In our case, a more general assumption is made, such
that

` = atb. (2.5)

In the case when a =
√

2ν and b = 1/2, the value of ` defined by Equation (2.5) reduces
to the one considered by Berezovski & Kaplanski (1995). In the case of b = 1/4 and the
long time limit, the model essentially reduces to the one described by Lugovtsov (1976)
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for the turbulent rings. One can expect that for real life vortex ring-like structures, the
values of b lie in the range of 1/4 6 b 6 1/2. Hence, the analysis of the model will focus
on this range of b.

Also, we will assume that ν is not constant, but changes with time (although it remains
homogeneous in space). For this case we can formally replace ν in Equation (2.2) with
an effective viscosity ν∗. It is expected that this generalisation of the vortex ring model
can incorporate the effects of turbulence.

The assumption of spatially homogeneous but time dependent effective viscosity ν∗ is
similar to that made by Lugovtsov (1976) for turbulent viscosity. In practice this viscosity
is expected to decrease from its maximal value near the maximal vorticity region to zero
at long distances from the vortex ring. This effect, however, is not important for the
analysis of the vortex ring dynamics since the most important effect of viscosity comes
from the region when it is maximal (Lugovtsov (1976)).

Remembering the definitions of the above mentioned dimensionless variables and pa-
rameters and `, and replacing ν by ν∗ in Equation (2.2), the latter equation can be
rewritten in the following form:

−b`
2

ν∗t

[

λ

b
ω + θ

∂ω

∂θ
+ σ

∂ω

∂σ
+ η

∂ω

∂η

]

+ Re

[

− ∂

∂σ

[

ω

σ

∂Φ

∂η

]

+
∂

∂η

[

ω

σ

∂Φ

∂σ

]]

=
∂2ω

∂σ2
+
∂2ω

∂η2
+

1

σ

∂ω

∂σ
− ω

σ2
, (2.6)

where the vortex ring Reynolds number is defined as Re = ζ0`
2/ν∗.

It should be noted that Re introduced in our paper is time dependent.
Further development of this model requires the specification of ν∗(t). Following Lu-

govtsov (1976), one can make a formal dimensionally correct assumption that ν∗ = ``
′

,
where `

′

= d`/dt (cf. Section 1). Remembering Equation (2.5), this assumption leads to
the following relation:

ν∗ = ``
′

= a2bt2b−1. (2.7)

In most realistic physical conditions we expect that the viscosity does not increase with
time and the thickness of the vortex ring does not decrease with time. This imposes the
following restriction on the values of b:

0 6 b 6 1/2. (2.8)

As shown later (see Equation (3.3)), the vortex ring Reynolds number is conserved for
b = 1/4, decreases with time for 1/4 < b 6 1/2 and increases with time for 0 6 b < 1/4.
The latter process has no physical grounds and Condition (2.8) is restricted to:

1/4 6 b 6 1/2. (2.9)

The values of b in the range (2.9) and a can be considered as free parameters. Their
values will be estimated based upon the comparison of the predictions of the model with
experimental data.

Using Equations (2.5) and (2.7), it can be shown that

b`2

ν∗t
= 1.

Using this result, one can see that for b = 1/2, Equation (2.6) is identical to Equation
(8) of Kaplanski & Rudi (1999) if one remembers that a2b = ν when a =

√
2ν.
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To simplify Equation (2.6) further, the term proportional to Re can be rewritten as:

R ≡ Re

[

− ∂

∂σ

[

ω

σ

∂

∂η

]

+
∂

∂η

[

ω

σ

∂

∂σ

]]

Ψ =
Re

`2

[ω

σ
div (v) + v∇ω

σ

]

. (2.10)

At the initial stage of vortex ring development, the core is thin and the streamlines
are practically circular and fluid velocities are almost perpendicular to the gradient of
vorticity. This allows one to assume that the term proportional to v∇ω

σ
is small at

this point. Since div (v) = 0 for incompressible flows, one can ignore the contribution
of R in Equation (2.10) in this case. In the final stage of vortex ring development, the
contribution of this term can be ignored, as Re approaches zero. The estimate of R in the
intermediate stage is more difficult to determine. Assuming that the term proportional
to Re (R) is close to zero, Equation (2.6) is simplified to

−λ
b
ω − θ

∂ω

∂θ
− σ

∂ω

∂σ
− η

∂ω

∂η
=
∂2ω

∂σ2
+
∂2ω

∂η2
+

1

σ

∂ω

∂σ
− ω

σ2
. (2.11)

The range of applicability of Equation (2.11) will be investigated more rigorously later
based on the comparison of its predictions with available experimental data for non-zero
values of Re.

Although the values of ω predicted by Equation (2.11) vary in time and space, the
specific momentum of the vortex ring defined by the expression

M = π

∫ ∞

0

∫ ∞

−∞

r2ζdxdr (2.12)

is conserved even in the turbulent case (Lugovtsov (1976)).

3. Analytical solutions

The linearised form of Equation (2.2) (dimensional form of Eq. (2.11) ) was solved
subject to the initial condition (Fukumoto & Kaplanski (2008)):

ζ0 = Γ0 δ(x) δ(r −R0),

where Γ0 is the initial circulation. The dimensionless form of this solution for λ = 4b can
be presented as:

ω =
σ

2
exp

[

−1

2

(

σ2 + η2 + θ2
)

]

[I0(σ θ) − I2(σ θ)] , (3.1)

where I0 and I2 are modified Bessel functions.
Note that Equation (3.1) coincides with the solution of the original system of Equations

(2.2)-(2.4) subject to the same initial condition, valid for arbitrary Re, in the limit of short
and long times. This is an expected result, since for long times Re→ 0 and for short times
the multiple of Re in Equation (2.6) tends to zero, as follows from the earlier presented
qualitative analysis. Note that in the limit of short times, Equation (3.1) reduces to the
Oseen solution for the decaying line vortex (see Panton (1996)).

From the conservation of M (see Equation (2.12)) it follows that:

ζ0 =
M

π
√

2π
a−4t−4b =

M

π
√

2
a−4t−λ. (3.2)

This yields

Re =
ζ0`

2

ν∗
=

M

π
√

2πb
a−4t1−4b =

M

π
√

2πb
a−4t1−λ. (3.3)
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As follows from Equation (3.3), the Reynolds number is conserved for b = 1/4. This
property of Re turned out to be convenient for the analysis of developed turbulent vortex
ring flows (Cantwell (2002)). For 1/4 < b 6 1/2 (cf. Condition (2.9)) the Reynolds number
decreases with time following the power law. For 0 < b < 1/4, Re would increase with
time. This is not consistent with the physical background of the phenomenon.

Although Solution (3.1) was derived based upon the assumption that the non-linear
terms proportional to Re in Equation (2.6) are negligible, it is thought that it can be
applied to the analysis of real-life laminar and turbulent vortex ring flows (see Section
2).

Remembering that

I1(x) =
x (I0(x) − I2(x))

2
, (3.4)

Equation (3.1) can be re-written as

ω̃ = exp

[

−1

2

(

σ2 + η2 + θ2
)

]

I1(σ θ), (3.5)

where

ω̃ = ζ/ζ̃0,

ζ̃0 = ζ0/θ =
M

π
√

2πR0

a−3t−3b =
M

π
√

2πR0

a−3t−λ. (3.6)

Note that λ in this case is equal to 3b, due to the different choice of the normalising
parameter ζ̃0. Equation (3.5) is identical to the one used by Kaplanski & Rudi (1999).

Following earlier approaches to the analysis of this problem (see Kaplanski & Rudi
(1999), Kaplanski & Rudi (2005)), the focus is directed to Equations (3.5) and (3.6).
The tilde sign ˜ will be omitted to simplify the notation. Note, dimensional forms of the
solutions of Equations (3.1) and (3.5) are identical.

Once the value of vorticity has been found, the dimensionless streamfunction Φ can
be calculated in exactly the same manner as Kaplanski & Rudi (1999). This is given by
the following equation, which follows from Equation (2.4):

Φ =
Mσ

4πR0ζ0`3

∫ ∞

0

F (µ, η)J1(θµ)J1(σµ)dµ =
σ
√

2π

4

∫ ∞

0

F (µ, η)J1(θµ)J1(σµ)dµ,

(3.7)
where

F (µ, η) = exp(ηµ)erfc

(

µ + η√
2

)

+ exp(−ηµ)erfc

(

µ− η√
2

)

,

erfc(x) =
2√
π

∫ ∞

x

exp(−t2)dt = 1 − erf(x) = 1 − 2√
π

∫ x

0

exp(−t2)dt,

J0 and J1 are Bessel functions; when deriving Equation (3.7), Equation (3.6) was taken
into account.

Once the value of Φ has been found, the components of velocity can be calculated
from Equations (2.3). At this stage, the dimensionless velocities need to be defined.
Following Saffman (1970), our analysis is based upon the following normalisations: ux ≡
(vx − Vx)/vn and ur ≡ vr/vn, where:

vn =
M

4 π2R3
0

=
Γ0

4 π R0
,

Γ0 = M/(π R2
0) is the initial circulation of the vortex ring (Kaplanski & Rudi (2005)).
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Remembering this definition of vn and Equations (2.3) and (3.7), the following expressions
have been obtained:

ux = π θ2
∫ ∞

0

µF (µ, η)J1(θµ)J0(σµ)dµ, (3.8)

ur = −π θ2
∫ ∞

0

µF̃ (µ, η)J1(θµ)J1(σµ)dµ, (3.9)

where

F̃ (µ, η) = exp(ηµ)erfc

(

µ + η√
2

)

− exp(−ηµ)erfc

(

µ− η√
2

)

.

Once the values of the vorticity and streamfunction for the vortex ring have been
obtained, then the dimensional energy, E, of the vortex ring can be calculated using the
following equation (Batchelor (1967)):

E = π ρ

∫ ∞

0

dr

∫ +∞

−∞

ζΨdx. (3.10)

As in the case of velocities, there are several ways to normalise E. In our analysis,
following Saffman (1992), E will be normalised by E0 = ρΓ2

0R0/2 = ρM2/(2π2R3
0).

Using Equations (2.4), (3.5) and (3.10), we obtain, following the approach developed
by Kaplanski & Rudi (2005):

Ẽ =
E

E0
=

√
πθ3

12
2F2

[

3

2
,
3

2
;
5

2
, 3;−θ2

]

, (3.11)

where

2F2 [a1, a2; b1, b2; x] =

∞
∑

k=0

(a1)k (a2)k x
k

(b1)k (b2)k k!
(3.12)

is the generalised hypergeometric function with the coefficients defined as

(α)0 = 1; (α)1 = α; (α)k = α (α+ 1) .... (α+ k − 1) (k > 2).

The plot of Ẽ versus θ as predicted by Equation (3.11) is shown in Fig. 2. As follows from
this figure, Ẽ monotonically increases with increasing θ, which indicates the dissipation of
vortex ring energy with time. In the same figure, the plots obtained under the assumptions
of small and large θ are shown. These will be discussed later in Section 5.

The form of Equation (3.11) is exactly the same as in the case of conventional laminar
vortex rings. However, the explicit time dependence of Ẽ predicted by this equation is
obviously different from that predicted by the conventional model due to the different
functions `(t). To illustrate this effect, let us assume that at a certain moment in time
t0: θ(t0) ≡ θ0 ≡ R0/(a t

b
0) = 1. Hence, at an arbitrary t: θ = θ0(t/t0)

−b = t̃−b, where
t̃ = t/t0. The plots of Ẽ versus t̃ for b = 1/2 and 1/4 in the range 0 6 t̃ 6 5 are shown
in Fig. 3. As can be seen from Fig. 3, the rate of energy decrease appears to be rather
sensitive to the value of b. For b = 1/2 (laminar case) this rate is the maximal one, while
for b = 1/4 this rate is the minimal one in the vicinity of t̃ = 1. At t̃ = 1 the plots for all
b coincide as expected.

Although the energy is an important parameter for vortex ring characteristics, it is
difficult to measure it in practical applications. A more practically important character-
istic of vortex rings is the translational velocity, introduced earlier (see Equation (2.3)).
Following Saffman (1970), this velocity is described in terms of the velocity of the vor-
tex ring centroid Vx, calculated based upon the following general equation (Helmholtz
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(1858), Lamb (1932)):

Vx =

∫∞

0

∫∞

−∞
(Ψ − 6x r vr) ζdxdr

∫∞

0

∫∞

−∞
r2ζdxdr

. (3.13)

As in the case of velocities ux and ur, this velocity will be normalised by vn.
Using Equations (2.4), (3.5) and (3.13), we obtain, following the approach developed

by Kaplanski & Rudi (2005):

Ux =
Vx

vn
=

√
πθ

{

3 exp

(

−θ
2

2

)

I1

(

θ2

2

)

+
θ2

12
2F2

[

3

2
,
3

2
;
5

2
, 3;−θ2

]

−3θ2

5
2F2

[

3

2
,
5

2
; 2,

7

2
;−θ2

]}

, (3.14)

where the generalised hypergeometric function 2F2 [a1, a2; b1, b2; x] was defined earlier
(see Equation (3.12).

The plot of Ux versus θ as predicted by Equation (3.14) is shown in Fig. 4. As follows
from this figure, Ux monotonically increases with increasing θ, as in the case of the vortex
ring energy. In the same figure, the plots obtained for the assumptions of small and large
θ are shown. These will be discussed later in Section 4.

As in the case of vortex ring energy, the form of Equation (3.14) is exactly the same as
for the case of conventional laminar vortex rings. However, the explicit time dependence
of Ux predicted by this equation differs from that predicted by the conventional model
due to the different functions `(t). As in the case of the vortex ring energy, we assume
that at a certain moment in time t0: θ0 ≡ R0/(a t

b
0) = 1. Hence, at an arbitrary t:

θ = θ0(t/t0)
−b = t̃−b, where t̃ = t/t0. The plots of Ux versus t̃ for b = 1/4 and 1/2 in the

same range of θ as in Fig. 3 are shown in Fig. 5.
As can be seen in this figure, the velocity Ux is a monotonically decreasing function of

time for all b, as in the case of the vortex ring energy. Also, similarly to the vortex ring
energy, the velocity decreases with time at a greater rate for larger b when t̃ is close to
1. As in the case of vortex ring energy, at t̃ = 1, the plots for all b coincide as expected.
The values of Ux increase with increasing b at t̃ < 1, and decrease with increasing b at
t̃ > 1. At t̃ > 5, Ux decreases slowly with increasing t̃, remaining positive, as in the case
of Ẽ.

Note that velocity Ux coincides with the absolute velocity of the points where ux =
ur = 0 (zero velocity in the moving frame of reference). Also, it was useful to introduce
an additional velocity which described the movement of the points of maximal vorticity
of vortex rings (Uωx). As follows from Equation (3.5), the x−coordinates of these points
correspond to η = ηmax = 0 or x = x0. The r−coordinates of these points, σ = σmax can
be found from the condition dω/dσ = 0 which is translated into the following condition:

(σ2
max + 1) I1(σmax θ) = σmaxθI0(σmax θ). (3.15)

The plot of σmax versus θ in the range of θ between 0 and 10 is shown in Fig. 6. In the
same figure, the plot of σx (when ux changes sign) versus θ is shown. As follows from this
figure, both σmax and σx monotonically increase with increasing θ. The fact that σmax is
always less than σx indicates that the region of maximal vorticity is always closer to the
axis of the vortex ring than the region where ux changes sign.

For large θ, both plots approach the line σ = θ which corresponds to r = R0. For θ → 0,
σmax approaches 1 from above, whilst σx approaches 2 from above. The limiting values
of σmax will be discussed in Section 4. There is no simple explanation of the properties
of σx, which were inferred from the numerical analysis of Equation (3.8).
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As in the case of Figs. 3 and 5, we assume that θ0 ≡ R0/(a t
b
0) = 1 which implies that

θ = t̃−b. The plots of rmax/R0 = σmax/θ and rx/R0 = σx/θ versus t̃ for b = 1/2 and 1/4
in the range 0 6 t̃ 6 5 are shown in Fig. 7. As follows from this figure, rmax is close to
R0 for all b and t̃ 6 1. For t̃ > 1, rmax increases with increasing t̃ and increasing b. In
agreement with Fig. 6, rx is always greater than rmax.

Remembering Equation (3.8) we obtain the expression for the normalised axial velocity
of fluid in the region of maximal vorticity in the form:

Uωx ≡ Vωx/vn = Ux + 2πθ2
∫ ∞

0

µ erfc

(

µ√
2

)

J1(θµ)J0(σmaxµ)dµ, (3.16)

where θ = θmax satisfies Equation (3.15).
The plots of Uωx and Ux versus θ in the range of θ between 0 and 10 are shown in Fig.

8. As can be seen from this figure, both Uωx and Ux increase with increasing θ. Uωx is
always substantially greater than Ux, especially at θ > 1. In the same figure, the plots of
Uωx and Ux versus θ obtained under the assumptions that θ � 1 and θ � 1 are shown.
These are discussed later in Section 4.

As in the case of Figs. 3, 4 and 7, it is assumed that θ0 ≡ R0/(a t
b
0) = 1 which implies

that θ = t̃−b. The plots of Uωx and Ux versus t̃ for b = 1/2 and 1/4 in the range 0 6 t̃ 6 5
are shown in Fig. 9. Both Uωx and Ux decrease with increasing time; the values of Uωx

being always greater than the values of Ux, in agreement with Fig. 8. At t̃ = 1, both Uωx

and Ux do not depend on b as in the cases shown in Figs. 3, 5 and 7.
From Equation (3.9) it can be seen that the predicted radial component of velocity

at the points of maximal vorticity of vortex rings (η = 0) is equal to zero. This is an
expected result as the streamlines at η = 0 are always perpendicular to plane η = 0.
However, this zero fluid velocity in the r−direction by no means prohibits the movement
of the point corresponding to the maximal vorticity (ηmax, σmax) in this direction. The
dimensionless effective radial velocity of this point can be found from Equation (3.15)
such that:

Ueff(r) =
1

vn

drmax

dt
, (3.17)

where rmax = `σmax.
Note that in contrast to the previously calculated velocities, the expression for Ueff(r)

contains an additional parameter M , via vn. This makes it difficult to compare directly
the values of Uωx predicted by Equation (3.16) and the values of Ueff(r) predicted by
Equation (3.17).

As in the case of Figs. 3, 4, 7 and 9, it is assumed that θ(t0) = θ0 = 1. In this case,

θ =
(

t
t0

)−b

= t̃−b. Also, we assume that vn = 1 m/s and a = 1 m·s−b. The plots of Ueff(r)

versus t̃ are shown in Fig. 10. As can be seen from this figure, at short times (t̃ < 1)
the time dependence of Ueff(r) is complex and highly dependents upon the value of b.
This will be discussed in more details in Section 4. However, at long times (starting from
approximately t̃ = 1) Ueff(r) is a very slowly decreasing function of time. The values of
Ueff(r) at these times decrease with decreasing b.

One of the important limitations of the model described so far is that it is based
upon the assumption that R0 =const. The approach suggested by Saffman (1970) and
further developed by Weigand & Gharib (1997) for laminar vortex rings, can be used to
generalise our model to the case of non-constant R0, which will be referred to as R. We
start with the dimensionally correct equation:

Vx =
M

kR3
, (3.18)
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where k is a proportionality constant. The decay of circulation can be described by the
second dimensionally correct equation:

d (VxR)

dt
= −k′ ν∗ Vx

R
, (3.19)

where k
′

is another proportionality constant. The viscosity ν∗ is defined by Equation
(2.7). In contrast to the case considered by Saffman (1970) and Weigand & Gharib
(1997), ν∗ depends on time. Having substituted Equation (3.18) into Equation (3.19)
and integrating the latter equation from t = t0 = 0 to t, one obtains:

R2 −R2
0 =

k
′

a2

2
t2b. (3.20)

For b = 1/2 and a =
√

2ν, Equation (3.20) reduces to the one derived by Saffman (1970)
and Weigand & Gharib (1997). Substituting Equation (3.20) into Equation (3.18) gives:

Vx =
M

k (R2
0 + k

′

a2

2 t2b)3/2
. (3.21)

For b = 1/2 and a =
√

2 ν, Equations (3.20) and (3.21) reduce to the corresponding
equations derived by Saffman (1970) and Weigand & Gharib (1997). In the dimensionless
form, Equation (3.21) can be rewritten as:

Ux =
4π2

k
(

1 + k′

2θ2

)3/2
. (3.22)

The form of Equation (3.22) depends neither upon a nor upon b. As in the previous
cases, it is assumed that θ(t0) = θ0 = 1. In this case, θ = t̃−b and Equation (3.22) can
be rewritten as follows:

Ux =
4π2

k
(

1 + k′ t̃2b

2

)3/2
. (3.23)

Equations (3.20) – (3.23) can be considered as the generalisation of the so called Saffman’s
second formula (see Equation (1.3)) for the vortex ring velocity for arbitrary a and b.

The values of k and k
′

could be obtained based upon the best fit with the experimental
data of Weigand & Gharib (1997). Alternatively they can be obtained based on the
minimal deviation of Ux predicted by Equations (3.23) and (3.14) in the limit of long t.
As the criterion of this minimal deviation, one can use the coincidence of the first two
terms of the asymptotic expansions of these equations in the limit of long times. This
leads to the following values:

k =
1320

2401

√
11π3/2 ≈ 10.153200, k

′

=
98

11
≈ 8.9090909.

The plots of Ux versus θ based on Equations (3.14) and (3.23) for these values of k and k
′

are shown in Fig. 11. A reasonable agreement between the values of Ux predicted by these
equations is observed over the whole range of θ. At θ < 2 these values approximately
coincide as expected.

Let us now introduce another dimensionless time defined as:

t∗ =
a2t2b

32R2
0

=
1

32θ2
. (3.24)

In the laminar case, when a =
√

2ν and b = 1/2, t∗ reduces to the one introduced by
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Weigand & Gharib (1997). Remembering (3.24), Equation (3.22) can be rewritten as:

Ux =
4π2

k (1 + 16k
′

t∗)
3/2

. (3.25)

This equation will be investigated in Section 5.

4. Limiting cases

In this section the limiting cases of the solutions presented in Section 3, referring to
long and short times, will be discussed.

4.1. Long times

In the long time limit θ � 1, Equations (3.5) and (3.6) can be simplified to:

ω =
σ θ

2
exp

[

−1

2

(

σ2 + η2
)

]

, (4.1)

Φ =
σ
√

2πθ

16

∫ ∞

0

µF (µ, η)J1(σµ)dµ.

Unfortunately, the latter integral cannot be presented in an analytical form. An alter-
native calculation of Φ can be based on substitution of Expression (4.1) into Equation
(2.4). The solution of the latter equation gives (Phillips (1956)):

Φ =
θ
√
π

2
√

2

σ2

(σ2 + η2)3/2

[

erf (s∗) −
2 s∗√
π

exp (−s2∗)
]

, (4.2)

where

s∗ =

√

σ2 + η2

2
.

Note that although ω predicted by Equation (4.1) depends upon θ, the corresponding
formula for the dimensional vorticity does not contain R0. This leads to a self-similar
solution when the vorticity depends upon only one parameter, the vortex ring momentum
M (cf. Lugovtsov (1970), Lugovtsov (1976)).

The combination of this equation and Equations (2.3) leads to the following expressions
for the velocity components:

ux =

√
2π θ3

2 (σ2 + η2)5/2
exp

(

−σ
2 + η2

2

)

[

2
√

σ2 + η2
(

σ4 − 2η2 + σ2(1 + η2)
)

−
√

2π exp

(

σ2 + η2

2

)

(

σ2 − 2η2
)

erf

(

√

σ2 + η2

√
2

)]

, (4.3)

ur = −
√

2π σηθ3

2















2 exp
(

−σ2+η2

2

)

(

3 + σ2 + η2
)

(σ2 + η2)2
−

3
√

2π erf

(√
σ2+η2

√
2

)

(σ2 + η2)5/2















. (4.4)

Keeping only the zeroth term in Series (3.12), Equations (3.11) and (3.14) are simplified
to:

Ẽ =

√
π θ3

12
, (4.5)
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Ux =
7
√
π θ3

30
. (4.6)

This dimensionless velocity corresponds to

Vx =
7

120 π
√
π

M

a3
t−3b ≈ 0.0105

M

a3
t−3b. (4.7)

The plot of Ẽ versus θ, based on Equation (4.5), is shown in Fig. 2. As follows from this
figure, at θ < 1/2 the values of Ẽ predicted by Equation (4.5) show very close agreement
with those predicted by Equation (3.11).

The plot of Ux versus θ, based on Equation (4.6), is shown in Fig. 4. As follows from
this figure, at θ < 1/2, the values of Ux predicted by Equation (4.6) are again almost
indistinguishable from those predicted by Equation (3.14), as in the case of the vortex
ring energy.

For a =
√

2ν and b = 1/2, Equation (4.7) is identical to the one obtained by Rott
& Cantwell (1993a) (see Equation (1.2)). For b = 1/4 the time dependence of Vx is
identical to the one reported earlier by Lugovtsov (1976), Glezer & Coles (1990), Cantwell
(2002), Afanasyev & Korabel (2004).

The location of the point of the maximal vorticity in the limit of small θ (ηmax =
0, σmax = 1) follows from Equation (3.15) (the latter condition corresponds to r = `). In
this case, Equation (3.16) is simplified to:

Uωx =
7
√
π θ3

30
+ 2 π θ2

∫ ∞

0

µ erfc

(

µ√
2

)

J1(θµ)J0(µ)dµ. (4.8)

When deriving Equation (4.8) it is important to note that in the limit θ � 1, Ux is given
by Equation (4.6).

The plots of Uωx versus θ based on Equation (4.8) are shown in Fig. 8. For θ < 1, the
values of Uωx predicted by Equation (4.8) are very close to those predicted by Equation
(3.16), as in the case of Ux (see Fig. 4).

As in the case of Figs. 3, 4, 7 and 9, it is assumed once again that θ0 ≡ R0/(a t
b
0) = 1

which implies that θ = t̃−b. The plots of Uωx versus t̃ for b = 1/2 and 1/4, predicted by
Equations (3.16) and (4.8) in the range 2 6 t̃ 6 5 are shown in Fig. 12. The values of
Uωx predicted by Equations (3.16) and (4.8) are reasonably close for all b in the whole
range of t̃ under consideration, although the closeness of the curves deteriorates with
decreasing b.

As already mentioned, in a long time limit (θ � 1), the solution of Equation (3.15) can
be presented as σmax = 1 which corresponds to rmax = `. In this case, the dimensionless
effective radial velocity of this point can be found from Equation (3.15) in the form:

Ueff(r) =
1

vn

drmax

dt
=

1

vn

d`

dt
=
a b tb−1

vn
. (4.9)

Assuming that θ0 ≡ R0/(a t
b
0) = 1, then θ = t̃−b. The plots of Ueff(r) versus t̃ for

b = 1/2 and 1/4, predicted by Equations (4.9) (for vn = 1 m/s and a = 1 m/sb) are
shown in Fig. 10, alongside the corresponding curves predicted by Equation (3.17). As
follows from this figure, the values of Ueff(r) predicted by Equations (3.17) and (4.9) are

reasonably close for all b and t̃ > 1.

Note that in the case of θ → 0 we have `� R0. In this case the vortex ring looses its
conventional torus form, and it might be ambiguous to call it as a cohesive ring.
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4.2. Short times

In a short time limit(θ� 1), Equation (3.5) can be simplified to:

ω =

√

1

2πσθ
exp

[

−1

2

(

(σ − θ)2 + η2
)

](

1 − 3

8σθ
− ...

)

. (4.10)

Having introduced a new dimensionless parameter s as the dimensionless distance from
the point (R0/`, x0/`) and assuming that |R0 − r| � R0, Equation (4.7) can be further
simplified to (see Kaplanski & Rudi (1999)):

ω =
1√
2πθ

exp

(

−1

2
s2
)(

1 + O

( |R0 − r|
2R0

))

. (4.11)

This equation is identical to the one reported earlier by Wang, Chu & Chien-Chang
(1997). It predicts the Gaussian distribution with respect to r/R0.

The plots of ω versus r/R0 predicted by Equations (3.5) and (4.11) are compared in
Fig. 13 for θ = 5 and θ = 0.5. These plots almost coincide for short times (θ = 5) but
show the greatest deviation for long times (θ = 0.5).

Assuming that η � 1, one obtains

erfc

(

µ− η√
2

)

→ 2,

erfc

(

µ+ η√
2

)

→

√
2 exp

(

− (µ+η)2

2

)

(µ + η)
√

2
.

The latter relation means that erfc
(

µ+η√
2

)

approaches zero faster than exp(−µη) for

large η. A similar analysis can be performed for η � −1. Hence, Equation (3.7) can be
simplified to:

Φ =
σ
√

2π

2

∫ ∞

0

exp(−µ|η|)J1(θµ)J1(σµ)dµ. (4.12)

This equation is similar to the one given by Lamb (1932) (see Equation (14) on page 239
of this book).

Using the same assumptions as during the derivation of Equation (4.12), the following
equations for the normalised components of velocity are obtained:

ux = π θ2
∫ ∞

0

µ exp(−µ|η|)J1(θµ)J0(σµ)dµ, (4.13)

ur = −π θ2
∫ ∞

0

µ exp(−µ|η|)J1(θµ)J1(σµ)dµ. (4.14)

In the limit of large x, the following asymptotic representation of the generalised
hypergeometric function will be used (Mathematica (2007)):

2F2 [a1, a2; b1, b2; x] =

[

exp(x)xa1+a2−b1−b2Γ(b1)Γ(b2)

Γ(a1) Γ(a2)
+

(−x)−a1Γ(a2 − a1) Γ(b1) Γ(b2)

Γ(a2) Γ(b1 − a1) Γ(b2 − a1)

+
(−x)−a2Γ(a1 − a2) Γ(b1) Γ(b2)

Γ(a1) Γ(b1 − a2) Γ(b2 − a2)

]

+ O

(

1

x

)

(4.15)

when a1 6= a2 and

2F2 [a1, a1; b1, b2; x] =

[

exp(x)x2 a1−b1−b2Γ(b1)Γ(b2)

Γ2(a1)
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+
(−x)−a1Γ(b1) Γ(b2) [−2 γ + log(−x) − ψ(a1) − ψ(b1 − a1) − ψ(b2 − a1)]

Γ(a1) Γ(b1 − a1) Γ(b2 − a1)

]

+O

(

1

x

)

(4.16)
where γ ≈ 0.57721566 is the Euler constant, Γ(x) is the Gamma function, ψ(x) is the
di-gamma function defined as:

ψ(x) =
d log Γ (x)

dx
. (4.17)

Having substituted Equation (4.17) into Equation (3.11) we obtain:

Ẽ = ln (θ) − γ/2 − ψ(3/2). (4.18)

When deriving Equation (4.18) the contribution of the imaginary term in Equation
(4.16) is ignored and the expression for 2F2 is rewritten for the required values of param-
eters as:

2F2

[

3

2
,
3

2
;
5

2
, 3;−θ2

]

=
12 θ−3

√
π

[

ln θ − γ

2
− ψ

(

3

2

)]

. (4.19)

Note than ψ(1) = γ.
Remembering that

γ

2
+ ψ(3/2) ≈ 1

2
+ 2.058− ln 8,

Equation (4.18) is identical to the one derived by Saffman (1992).
The plot of Ẽ versus θ, based on Equation (4.18), is shown in Fig. 2. As follows from

this figure, at θ > 5 the values of Ẽ predicted by Equation (4.18) almost coincide with
those predicted by Equation (3.11).

Having substituted Equations (4.15) and (4.16) into Equation (3.14) one obtains:

Ux = ln θ +
3 − γ

2
− ψ(3/2) +O(

1

θ
). (4.20)

When deriving Equation (4.20), Equation (4.15) was rewritten for the required values
of parameters as:

2F2

[

3

2
,
5

2
;
5

2
, 3;−θ2

]

=
5 θ−3

2
√
π

(4.21)

and it was taken into account that

3 exp

(

−θ
2

2

)

I1

(

θ2

2

)

=
3√
π θ

.

In the case when ` =
√

2νt, Equation (4.20) reduces to the one obtained by Saffman
(1970) (see Equation (1.1)).

The plot of Ux versus θ, based on Equation (4.20), is shown in Fig. 4. As follows from
this figure, at θ > 5 the values of Ux predicted by Equation (4.20) show good agreement
with those predicted by Equation (3.14); the difference between the values of Ux predicted
by these equations is clearly visible over the whole range of θ under consideration.

The location of the point of the maximal vorticity (ηmax = 0, σmax = θ) follows from
Equation (3.15) (the latter condition corresponds to r = R0). In this case, Equation
(3.16) is simplified to:

Uωx = ln θ+
3 − γ

2
− ψ(3/2) + 2 π θ2

∫ ∞

0

µ erfc

(

µ√
2

)

J1(θµ)J0(θµ)dµ. (4.22)

When deriving Equation (4.22) it was considered that in the limit θ � 1, Ux is given by
Equation (4.20).
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The plots of Uωx versus θ based on Equation (4.22) are shown in Fig. 8. As follows from
this figure, for θ > 1 the values of Uωx predicted by Equation (4.22) are reasonably close
to the ones predicted by Equation (3.16), although the closeness of the corresponding
curves is worse than in the case of Ux (see Fig. 4).

As in the case of Figs. 3, 4, 7, 9 and 12, it is assumed that θ0 ≡ R0/(a t
b
0) = 1 which

implies that θ = t̃−b. The plots of Uωx versus t̃ for b = 1/2 and 1/4, predicted by
Equations (3.16) and (4.22) for t̃ 6 1 are shown in Fig. 14. The values of Uωx predicted
by Equations (3.16) and (4.22) are reasonably close for all b for sufficiently small t̃. Note
that the range of closeness of the curves shown in Fig. 14, is outside the range shown in
Fig. 8.

In a short time limit (θ � 1), Equation (3.15) can be simplified to

(σ2
max + 1)

(

1 − 3

8σmaxθ

)

= σmaxθ

(

1 − 1

8σmaxθ

)

.

This is an algebraic equation with respect to θ. Its physically meaningful solution can be
presented as

θ = σmax +
3

4σmax

In the dimensional form this solution can be presented as:

rmax = R0 −
3`2

4rmax
. (4.23)

This equation shows that for sufficiently small, but non-zero t̃, rmax < R0. In the limit
t̃→ 0, rmax = R0. These properties of rmax are consistent with the plots shown in Fig. 7,
although the resolution of the curves in the immediate vicinity of t̃ = 0 is not sufficient
to clearly demonstrate the convergence of rmax to R0.

Equation (4.23) can be considered as a quadratic equation in rmax. Its solution in the
limit of short times can be presented as:

rmax = R0

(

1 − 3`2

4R2
0

)

= R0

(

1 − 3a2t2b

4R2
0

)

. (4.24)

Having substituted this equation into Equation (3.17) we obtain:

Ueff(r) = − 3a2b

2R0vn
t2b−1. (4.25)

As follows from Equation (4.25), for sufficiently small times, Ueff(r) is always negative.

This is consistent with our earlier observation that for sufficiently small, but non-zero t̃,
rmax < R0, while in the limit t̃ → 0, rmax = R0. For b = 1/2, Ueff(r) remains finite at

t̃ → 0, while for 1/4 < b < 1/2, Ueff(r) → −∞ at t → 0. These predictions of Equation
(4.25) are consistent with the trends of the curves shown in Fig. 10 for small times.

5. Theory versus experiments

The results of experimental studies of vortex rings in various controlled and un-
controlled conditions have been reported in numerous papers (e.g. Shariff & Leonard
(1992), Lim & Nickels (1995)). In the case of classical vortex rings generated in liquids
(e.g. water) their basic properties have been explained in terms of the conventional mod-
els of laminar rings (Saffman (1970), Saffman (1992), Rott & Cantwell (1993a), Rott &
Cantwell (1993b), Fukumoto & Moffatt (2000), Wang, Chu & Chien-Chang (1997)). In
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what follows, some of the theoretical results described so far are compared with published
experimental data.

The values of Ux, predicted by Equations (3.14) and (3.25) for b = 1/2, Saffman’s
formula (1.1) and the upper and lower bounds of the experimental results reported by
Weigand & Gharib (1997) are compared in Fig. 15. As shown by Weigand & Gharib
(1997), their experimental data in the range of Reynolds numbers between 830 and 1650
lie between the lower and upper boundary curves described by Equation (3.23) with
(k = 14.5; k

′

= 10.6) and (k = 13.6; k
′

= 7.5) respectively. The best curve fit for
experimental data was achieved for (k = 14.4; k

′

= 7.8). As can be seen from Fig. 15,
both plots predicted by Equations (3.14) and (3.23) for b = 1/2 are reasonably close to
the experimental results by Weigand & Gharib (1997) in the range 830 6 Re 6 1650.
This was expected, as the results presented by Weigand & Gharib (1997) referred to
the laminar case. The result predicted by Equation (1.1) do not depend on a or b. At
t∗ > 0.01 the plots based on Equations (3.14) and (3.23) are approximately coincident
in agreement with Fig. 11.

The experimental data obtained by Weigand & Gharib (1997) refer to real life vortex
rings, produced in the laboratory. At the initial time, these rings did not have delta-
function-like structures of the vorticity distribution, which was assumed in Solution (3.1).
Hence, a noticeable deviation of the experimental plots from the predictions of the model
are observed at short times. Note that there is no contradiction between this result and
Table 1 of Weigand & Gharib (1997), predicting an almost linear increase in the vortex
ring translational velocity with increasing Re. This is related to the fact that the velocity
in Table 1 of Weigand & Gharib (1997) is dimensional, while the velocity shown in Fig.
15 is dimensionless and proportional to Vx/Γ0 ∼ Vx/Re.

Also, an attempt was made to compare the velocities predicted by Equation (3.14) with
experimental data reported by Dabiri & Gharib (2004). The latter authors performed
experimental studies of isolated vortex rings in water in the range of Re between 2000 –
4000 based on the initial circulations (when vortex rings were first observed). As in the
previously described experiments by Weigand & Gharib (1997), the vortex rings were
generated by a piston motion and they were observed to start approximately 2 s after
the piston was first set to motion. Two values of the ratio of L (stroke) to D (diameter)
were considered: 4 and 2. In the case of L/D = 4, the observed velocities of the vortex
rings were approximated as:

Vx = 5 t−0.34. (5.1)

where Vx is in cm/s, and t is in s. Normalising Vx by Vx(tinit = 1 s) and t by tinit = 1 s,
Equation (5.1) can be rewritten as:

Ux =
Ux

Ux(tinit)
=

Vx

Vx(tinit)
=

(

t

tinit

)−0.34

= (t)−0.34. (5.2)

The values of Ux versus t predicted by Equation (5.2) are shown in Fig. 16 as a dashed
curve.

To compare the prediction of Equation (5.2) with Equation (3.14) the values of θinit =
θ(tinit) and b need to be specified. As follows from the analysis by Kaplanski & Rudi
(2005), the values of θinit predicted by the slug-flow model are controlled by L/D. As
follows from Fig. 2 of Kaplanski & Rudi (2005), for L/D = 4, θinit is expected to be
in the range from 4 to 1 (the thickest vortex ring, the shape of which can be clearly
identified). The model, described earlier in this section, is valid for 1/4 6 b 6 1/2. The
plots of Ux versus t, predicted by Equation (3.14), for b = 1/4, 1/2 and θinit = 1, 4
and 2.5 (averaged between 1 and 4), are shown in Fig. 16. As follows from this figure,
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in the case of b = 1/4 the predicted values of Ux are the closest to the experimentally
observed values of Ux when θinit = 2.5. When θinit = 1 the observed values of Ux are
expected to match the predicted ones for b between 1/4 and 1/2. There is no match
between the experimentally observed and predicted values of Ux for θinit = 4. The case
for L/D = 4 is particularly important for our comparison, as in this case the momentum
of vorticity of the observed vortex rings was conserved in the experiment described by
Dabiri & Gharib (2004). The derivation of Equation (3.14) was essentially based upon
the assumption that this momentum was conserved.

In the case of L/D = 2, the values of θinit are expected to be in the range between
1 and 26 with the average value equal to 13.5. The agreement between theoretical and
experimental results turned out to be the best for b = 1/4 and θinit = 13.5 (the plots are
not shown).

In Fig. 17 the results predicted by Eqs. (5.2), (3.14) and (3.25) are compared for
θinit = 2.5. The results predicted by Eq. (3.14) are shown for b = 1/4, while the results
predicted by Eq. (3.25) are shown for b = 1/4 and b = 1/2. As can be seen from this
figure, the results predicted by both Eqs. (3.14) and (3.25) for b = 1/4 are reasonably
close to the results predicted by Eq. (5.2). At the same time the results predicted by Eq.
(3.25) for b = 1/2 are noticeably different from those predicted by Eq. (5.2), in agreement
with Fig. 16.

Note that the experimental results predicted by Maxworthy (1972) in the same range
of Re were approximated as (see Dabiri & Gharib (2004)):

Ux = (t)−1. (5.3)

The reliability of these results was questioned by Dabiri & Gharib (2004). They were not
used in our analysis.

6. Conclusions

A conventional laminar vortex ring model has been generalised by assuming that the
time dependence of the vortex ring thickness ` is given by the relation ` = a tb, where a is
a positive number, and 1/4 6 b 6 1/2. In the case when a =

√
2ν, where ν is the laminar

kinematic viscosity, and b = 1/2, the predictions of the generalised model are identical
with the predictions of the conventional model. The time dependent effective viscosity ν∗
is presented as ` `

′

. In the case when a =
√

2ν and b = 1/2, ν∗ = ν . This generalisation
was performed both in the case of fixed vortex ring radius R0, and increasing vortex ring
radius. In the latter case, the so called second Saffman’s formula (see Saffman (1970)) has
been generalised. The general solutions for vortex ring vorticity, streamfunction, energy,
and velocities have been shown to reduce to the previously reported solutions in the cases
of long and short times. It has been shown that both vortex ring energy and translational
velocity depend strongly on the value of the parameter b.

The time evolutions of the locations of the region of maximal vorticity and the region,
where the velocity of fluid is equal to zero, in the frame of reference moving with the
vortex ring centroid, are found. It is pointed out that the location of both regions depends
on b; the second region being always further away from the vortex axis than the first one.
It is shown that the axial velocities of the fluid in the first region are always larger than
the axial velocities in the second region. Both velocities depend strongly on b. Although
the radial component of velocity in both these regions is equal to zero, the location of both
these regions changes with time. This leads to the effective radial velocity component,
and the latter depends on b.

Theoretical results have been validated against experimental data reported by Weigand
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& Gharib (1997) and Dabiri & Gharib (2004) in a wide range of Reynolds numbers (based
on local circulation).
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Figure Captions

Fig. 1

A schematic presentation of the vortex ring with ` = atb.

Fig. 2

The plots of Ẽ versus θ as predicted by Equations (3.11) (arbitrary θ), (4.5) (θ � 1),
and (4.18) (θ � 1).

Fig. 3

The plots of Ẽ versus t̃ = t/t0 as predicted by Equation (3.11) for b = 1/2 and 1/4.

Fig. 4

The plots of Ux versus θ as predicted by Equations (3.14) (arbitrary θ), (4.6) (θ � 1),
and (4.20) (θ � 1).

Fig. 5

The plots of Ux versus t̃ = t/t0 as predicted by Equation (3.14) for b = 1/2 and 1/4.

Fig. 6

The plots of σmax (location of the point of maximal vorticity) and σx (location of the
point where ux = ur = 0) versus θ.

Fig. 7

The plots of rx/R0 (location of the point where ux = ur = 0) versus t̃ = t/t0 for
b = 1/2 (curve 1) and b = 1/4 (curve 2); the plots rmax/R0 (location of the point of
maximal vorticity) versus t̃ = t/t0 for b = 1/2 (curve 3) and b = 1/4 (curve 4).

Fig. 8

The plots of Ux versus θ as predicted by Equation (3.14) (long dashed curve), Uωx

versus θ as predicted by Equation (3.16) for arbitrary θ (solid curve), Equation (4.8) for
small θ (dashed-dotted curve) and Equation (4.22) for large θ (short dashed curve).

Fig. 9

The plots of Uωx (predicted by Equation (3.16)) (curves 1) and Ux (predicted by Equa-
tion (3.14)) (curves 2) versus t̃ for b = 1/2 (solid curves) and 1/4 (dashed curves).

Fig. 10

The plots of Ueff(r) versus t̃ predicted by Equation (3.17) (arbitrary t̃) (solid curves)

and Equation (4.9) (large t̃) (dashed curves) for b = 1/2 and 1/4 (numbers near the
curves).

Fig. 11

The plots of Ux versus θ based on Equations (3.14) (solid curve) and (3.23) (dashed
curve) for k = 10.153200 and k

′

= 8.9090909.

Fig. 12

The plots of Uωx versus t̃ as predicted by the general Equation (3.16) (solid curves)
and by the simplified Equation (4.8) (dashed curves) for b = 1/2 and 1/4 (numbers near
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the curves).

Fig. 13

The plots of ω versus r/R0 as predicted by Equations (3.5) (dashed curves) and (4.11)
(solid curves) for θ = 5 and θ = 0.5 (numbers near the curves).

Fig. 14

The plots of Uωx versus t̃ as predicted by the general Equation (3.16) (solid curves)
and by the simplified Equation (4.22) (dashed curves) for b = 1/2 and 1/4 (numbers near
the curves).

Fig. 15

The plots of Ux versus log t∗ = log
[

1/(32θ2)
]

based on Equations (3.14) (thick solid

curve), (3.23) (dashed curve) for k = 10.153200 and k
′

= 8.9090909, and (1.1) (dashed-
dotted curve); lower and upper bounds for experimental results by Weigand & Gharib
(1997) correspond to the lower and upper boundaries of the shaded area.

Fig. 16

The plots of Ux = Ux(t)/Ux(t = tinit = 1 s) versus t = t/tinit as predicted by exper-
imental results by Dabiri & Gharib (2004) for L/D = 4: Ux = (t)−0.34 (dashed curve)
and the model (Equation (3.14)) for b = 1/4 (solid curves) and for b = 1/2 (dashed-
dotted curves). Thin solid and dashed-dotted curves refer to θinit = 1 (upper curves) and
θinit = 4 (lower curves). Thick solid and dashed-dotted curves refer to θinit = 2.5.

Fig. 17

The plots of Ux = Ux(t)/Ux(t = tinit = 1 s) versus t = t/tinit as predicted by ex-
perimental results by Dabiri & Gharib (2004) for L/D = 4: Ux = (t)−0.34 (Equation
(5.2)) and the model (Equation (3.14) for b = 1/4 and Equation (3.25) for b = 1/4 and
b = 1/2). All theoretical curves refer to θinit = 2.5.
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