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The previously developed kinetic model for droplet heating and evaporation into a high pressure air is gen-
eralised to take into account the combined effects of inelastic collisions between molecules in the kinetic
region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that
for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear
function of the vapour temperature at the outer boundary of this region, but practically does not depend
on vapour density at this boundary for all models, including and not including the effects of inelastic col-
lisions, and including and not including the effects of a non-unity evaporation coefficient. For any given
temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease
with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is
strong for small numbers of these degrees of freedom but negligible when the number of these degrees
exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom
of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this bound-
ary decreases almost linearly with increasing vapour density at the same location for all above-mentioned
models. For any given vapour density at the outer boundary of the kinetic region the values of the mass
flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than
for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead
to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative
to the hydrodynamic model, compared with the similar increase predicted by the kinetic model consider-
ing only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be noticeable for
gas temperatures of 1500 K. The application of the rigorous kinetic model, taking into account the effects
of inelastic collisions and a non-unity evaporation coefficient, and the model taking into account the tem-
perature gradient inside droplets, is recommended when accurate predictions of the values of droplet sur-
face temperature and evaporation time in Diesel engine-like conditions are essential.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Langmuir [1] was perhaps the first to pay attention to the exis-
tence of a ‘concentration drop’ in the vicinity of the surface of an
evaporating solid. This phenomenon was further investigated in a
number of papers summarised in [2]. It was pointed out that the gra-
dients of temperature and vapour concentration rise sharply in the
immediate vicinity of heated (or cooled) and evaporating surfaces
(liquid or solid). The thickness of the layer where this rise takes place
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was estimated to be of the order of several mean free paths ‘. Assum-
ing that this thickness is equal to ‘, the rate of evaporation from the
surface was considered to be the same as that into a vacuum. This
rate of evaporation was assumed to be equal to the loss of vapour
into the surrounding space by diffusion. Surprisingly, this simple
model and its minor modifications are still widely used in the mod-
elling of droplet heating and evaporation processes (e.g. [3,4]).

An overview of more recent further developments of this ap-
proach to the modelling of droplet heating and evaporation is
presented in [5,6]. The most advanced of these developments,
based on the direct numerical solution to the Boltzmann equations
for fuel vapour and air (background gas) in the vicinity of droplets
with the relevant boundary conditions, was described in [7–9].
In these papers, two regions of gas above the surface of the
evaporating droplet were considered: the kinetic (in the vicinity
of the droplet surface) and hydrodynamic regions. In the most
ights reserved.
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Nomenclature

A transformation matrix in Eq. (27)
aij components of A
BM Spalding mass transfer number
BT Spalding heat transfer number
c specific heat capacity
CF friction drag coefficient
D diffusion coefficient
E energy
E unit matrix
f molecular distribution function
fn parameter introduced in Eq. (6)
h convection heat transfer coefficient
h0 parameter defined by Eq. (10)
j mass flux
J collisional integral
k thermal conductivity
kB Boltzmann constant
Kn Knudsen number
‘ mean free molecular path
L latent heat of evaporation
Le Lewis number
M molar mass or total number of cells
N number of degrees of freedom
NA Avogadro number
p pressure or momentum
Pe Peclet number
Pr Prandtl number
q heat flux
qn parameter defined by Eq. (11)

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1 Ei

q
r position
R distance from the droplet centre
Rd droplet radius
Ru universal gas constant
Rv gas constant referring to vapour
Re Reynolds number
t time
T temperature
~T (Tr � 300)/300
~TRd TRd/Ts

Us maximal surface velocity
v velocity vector
vn eigenfunctions
xi coordinates of vector X
X molar fraction
X vector in N-dimensional space
Y mass fraction

Greek symbols
b evaporation coefficient
dRd thickness of the kinetic region
Dt timestep
DU jUg � Udj
e Lennard-Jones parameter
Hn function defined by Eq. (6)
j thermal diffusivity
k, kn eigenvalues defined by Eq. (9)
l dynamic viscosity
l0(t) parameter defined by Eq. (7)
n R/Rd

q density
~qRd qRd/qs

rva parameter introduced in Eq. (20)
u parameter defined by Eq. (24)
U parameter used in the definition of kmix

v parameter defined by Eq. (13)
XD,va parameter introduced in Eq. (20)

Subscripts
a air
amb ambient
b boiling
cr critical
d droplet
e evaporation
eff effective
f total
g gas
h hydrodynamic
i degrees of freedom
k kinetic
l liquid
mix mixture
out outgoing
p constant pressure
r reference or reflected
Rd interface between kinetic and hydrodynamic regions
s surface or swelling
v vapour
0 initial, reference or at the beginning of a timestep
1 at the end of a timestep

Superscripts
T transpose
0 after collisions
� normalised
� average

526 S.S. Sazhin et al. / International Journal of Heat and Mass Transfer 56 (2013) 525–537
comprehensive model, described by Sazhin and Shishkova [9], it
was assumed that both mass and heat transfer processes in the
kinetic region were taken into account.

In our most recent paper [10], simple approximate formulae
describing temporal evolution of Diesel fuel droplet radii and tem-
peratures predicted by the kinetic model were suggested. These
formulae are valid in the range of gas temperatures relevant to Die-
sel engine-like conditions and fixed values of initial droplet radii,
or in the range of initial droplet radii relevant to Diesel engine-like
conditions and fixed values of gas temperature. The new approxi-
mations were shown to be reasonably accurate for predicting the
temporal evolution of droplet radii and droplet evaporation times.
The predictions of droplet temperatures turned out to be less
accurate than those of droplet radii, but this accuracy was believed
to be sufficient for many practical applications. The application of
these formulae is expected to reduce dramatically the CPU require-
ments of kinetic modelling, which can potentially open the way to
the implementation of the kinetic models into engineering compu-
tational fluid dynamics (CFD) codes designed to model droplet
heating and evaporation in a realistic engineering environment,
including that of Diesel engines (e.g. see [11,12]).

Although considerable progress in the development of kinetic
models of droplet heating and evaporation was reported in [7–
10], all these models were based on a number of restrictive assump-
tions. Firstly, in all these models it was assumed that there is no
temperature gradient inside droplets. The limitations of this
assumption have been widely discussed in the literature, using
the conventional hydrodynamic approach (e.g. [13–15]). Nobody,



Fig. 1. Liquid phase, kinetic and hydrodynamic regions in the vicinity of the surface
of the droplet. Ts is the droplet surface temperature, qs is the vapour density in the
immediate vicinity of the droplet surface, TRd and qRd are the temperature and
density of vapour at the outer boundary of the kinetic region. dRd indicates the
thickness of the kinetic region, jv and q show the directions of the vapour mass and
heat fluxes, respectively.
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however, to the best of our knowledge, has considered this effect in
conjunction with kinetic modelling. Secondly, the kinetic models,
described in [7–10], were based on the assumption that all colli-
sions between molecules are elastic. This assumption could be jus-
tified in the case of monoatomic molecules such as Argon, but in the
case of complex molecules, such as n-dodecane C12H26 (the nearest
approximation to Diesel fuel), this assumption becomes highly
doubtful. A new approach to the solution of the Boltzmann equation
in the presence of inelastic collisions was suggested in [16], but this
approach has not yet been applied to the modelling of heating and
evaporation of droplets. Thirdly, in the models described in [7–10]
it was assumed that the evaporation coefficient is equal to 1, which
could not be rigorously justified. Moreover, in our recent papers it
was shown that this coefficient can be well below 1 (close to 0.5)
especially when temperatures are close to critical [17–19].

The aim of this paper is to develop further the kinetic model de-
scribed in [5–10] in which these assumptions are relaxed. We will
restrict our analysis to stationary droplets and ignore the effects of
the moving boundary due to evaporation (see [20–22] for the anal-
ysis of this effect), the formation of the thermal boundary layer
around droplets (see [23] for details) and the effects of thermal
radiation [6].

In Section 2 the physical models used in various regions inside
and around droplets are described. The model used for the analysis
of the effects of inelastic collisions is presented and discussed in
Section 3, following [16]. The algorithm used for calculations is
briefly described in Section 4. The values of droplet temperatures
and radii predicted by various models, but assuming that the evap-
oration coefficient is equal to 1, are compared in Section 5. The
modifications of these results in the case when the evaporation
coefficient is not equal to 1 are presented and discussed in Sec-
tion 6. The main results of the paper are summarised in Section 7.
2. Physical models

As in [7–10], two regions of gas above the surface of the evap-
orating fuel droplet are considered: the kinetic and hydrodynamic
regions. In contrast to [7–10], we relax the assumption that the li-
quid thermal conductivity is infinitely large and consider the pro-
cesses in the liquid phase region as well. All three regions are
schematically shown in Fig. 1. As in [7–10], we assume that gas
consists of two components, fuel vapour and background air, both
in the kinetic and hydrodynamic regions. It is assumed that the
contribution of chemical reactions of fuel vapour and oxygen can
be ignored. Fuel vapour and air dynamics in the kinetic region
are described by the Boltzmann equations, while the conventional
hydrodynamic analysis is applied in the hydrodynamic region.

As in [7–10], the effects of the curvature of the droplet surface
are ignored in the analysis. This is justified by the fact that the
thickness of the kinetic region is very small, not more than 10–
100 ‘. Note that although in this case the conventional Knudsen
number Kn = ‘/Rd, where Rd is the droplet radius, becomes infi-
nitely small, the kinetic effects cannot be a priori ignored. This phe-
nomenon has been discussed by a number of authors (e.g. [24–29])
and is confirmed by the results of our analysis.

The models used in all three regions and the conditions at the
interface between the regions are discussed in the following three
sections.
2.1. Liquid phase region

The models for droplet heating used in [14,15] were implicitly
based on the assumptions that the evaporation rate of droplets is
small and the value of droplet radius Rd does not change during
any time step (although this radius changes from one step to an-
other). This means that the effect of a moving boundary on droplet
heating was ignored. This is a well known approach used in all
available CFD codes (e.g. [30]). Two approaches were developed
to take into account the changes in droplet radius Rd during the
time steps. Firstly it was assumed that Rd is a linear function of
time. Secondly, the evolution of droplet temperature was calcu-
lated for an a priori fixed function Rd(t) [20,21]. These effects, how-
ever, will not be taken into account in the present analysis.

Assuming that the droplet heating process is spherically sym-
metric, the droplet temperature (T � T(t,R)) can be found from
the solution to the equation for T in the form [31,32]:

@T
@t
¼ j

@2T

@R2 þ
2
R
@T
@R

 !
ð1Þ

for 0 6 t < te, 0 6 R < Rd(t), where j is the liquid thermal diffusivity
(j = kl/(clql)), kl is the thermal conductivity, cl is the specific heat
capacity, ql is the density, R is the distance from the centre of the
droplet, te is the evaporation time. The effect of thermal radiation
is ignored.

Remembering the physical background to the problem, we look
for the solution to this equation in the form of a twice continuously
differentiable function T � T(t,R) for 0 6 t < te, 0 6 R < Rd(t). This
solution should satisfy the boundary condition:

kl
@T
@R
þ hT

� �����
R¼RdðtÞ

¼ hTg þ qlL _RdeðtÞ; ð2Þ

T is finite and continuous at R ? 0, Ts = T(Rd(t), t) is the droplet’s sur-
face temperature, L is the latent heat of evaporation, h is the convec-
tion heat transfer coefficient, _RdeðtÞ 6 0 is the rate of change of
droplet radius due to evaporation. Eq. (2) is the energy balance con-
dition at R = Rd(t). The initial condition is taken in the form:

Tðt ¼ 0Þ ¼ T0ðRÞ; ð3Þ

where 0 6 R 6 Rd0 = Rd(t = 0). In conventional hydrodynamic mod-
els, the value of Rd(t) is controlled by vapour diffusion from the
droplet surface and droplet thermal swelling. In our model, it is con-
trolled by vapour diffusion from the interface between the kinetic
and hydrodynamic regions (see Fig. 1) and swelling, and can be
found from the equation [6]:

_Rd� _Rdeþ _Rds¼�
Dgqtotal lnð1þBMÞ

qlRd
þRd0

Dt
qðT0Þ
qðT1Þ

 !1=3

�1

2
4

3
5; ð4Þ
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where _Rds is the rate of change of droplet radius due to swelling (or
contraction), BM = YvRd/(1 � YvRd) is the Spalding mass transfer num-
ber (assuming that there is no vapour in the ambient gas), YvRd is the
mass fraction of vapour at the interface between the kinetic and
hydrodynamic regions, which is ultimately controlled by gas tem-
perature in this region (TRd) [6], T0 and T1 are average droplet tem-
peratures at the beginning and the end of the time step Dt, q are the
corresponding densities.

The first term on the right hand side of Eq. (4) follows from a
well known expression for the mass evaporation rate _md (see Eq.
(7) of [6]): _Rde ¼ _md= 4pR2

dql

� �
. The second term is found from

the relation:

_Rds ¼
Rd1 � Rd0

Dt
¼ Rd0

Dt
Rd1

Rd0
� 1

� �
¼ Rd0

Dt
qðT0Þ
qðT1Þ

 !1=3

� 1

2
4

3
5:

At the last step of the derivation of this formula it was taken into
account that the total mass of the droplet is conserved during
swelling.

When deriving (4) we ignored the difference between Rd and
Rd + dRd. The validity of this assumption was checked by a direct
comparison of the results, taking and not taking into account the
effects of the sphericity of droplets for thickness of the kinetic re-
gion equal to ten mean molecular paths, calculated for pressure
equal to 30 bars (Diesel engine-like conditions) and temperatures
equal to fuel droplet surface temperatures (see Section 3.1 and
Eq. (11) of [8]).

Assuming that Rd is fixed during the time step, the analytical
solution to Eq. (1) subject to the above boundary and initial condi-
tions was obtained in the form [33]

TðRÞ ¼ 1
R
ffiffiffiffiffi
Rd
p

X1
n¼1

HnðtÞ sin kn
R
Rd

� �
þ l0ðtÞ

1þ h0

R
Rd

" #
; ð5Þ

where

HnðtÞ¼Hnð0Þexp �jk2
nt

R2
d0

" #
þ fn

Z t

0

dl0ðsÞ
ds exp �jk2

nðt�sÞ
R2

d0

" #
ds; ð6Þ

l0ðtÞ�R5=2
d

h
kl

Tg ; ð7Þ

fn¼�
sinkn

kvnk2k2
n

;vnðnÞ¼sinknn ðn¼1;2; . . .Þ:

kvnk2¼1
2

1�sin2kn

2kn

� �
¼1

2
1þ h0

h2
0þk2

n

 !
: ð8Þ

n = R/Rd, kn are positive solutions to the equation

k cos kþ h0 sin k ¼ 0 ð9Þ

presented in ascending order,

h0 ¼
h
kl

Rd � 1 ð10Þ

is assumed to be constant during the time step,

Hnð0Þ ¼ qn þ l0ð0Þfn;

qn ¼
1

kvnk2

Z 1

0
R3=2

d0 nT0ðnRd0ÞvnðnÞdn:
ð11Þ

The effect of recirculation inside droplets was taken into ac-
count based on the effective thermal conductivity (ETC) model
[34] in which the liquid thermal conductivity kl is replaced by
the effective thermal conductivity

keff ¼ vkl; ð12Þ

where the coefficient v is defined as
v ¼ 1:86þ 0:86 tanh½2:245log10ðPedðlÞ=30Þ�; ð13Þ

Ped(l) = Red(l)Prl is the droplet Peclet number, in which liquid trans-
port properties and the maximum surface velocity inside droplets
were used. The latter velocity was calculated as [34]:

Us ¼
1

32
DU

lg

ll

� �
RedCF ; ð14Þ

where DU � jUg � Udj is the relative velocity between ambient gas
and droplets, lg(l) is the dynamic viscosity of gas (liquid), Red is
the droplet Reynolds number based on the droplet diameter, CF is
the friction drag coefficient estimated as [34]:

CF ¼
12:69

Re2=3
d ð1þ BMÞ

: ð15Þ

It can be shown that in the limit kl ?1, Solution (5) reduces to
[35]:

Td ¼ Tg þ ðTd0 � TgÞ exp � 3ht
clqlRd

� �
; ð16Þ

where Td does not depend on R.
Eq. (16) was used in the previously reported kinetic models of

droplet heating and evaporation [7–10]. The model presented in
this paper will be based on Eq. (5). The results presented by the
models based on both equations will be compared where
appropriate.

The following approximations for n-dodecane are used, follow-
ing [36]:

L ¼ 37440 � ðTcr � TsÞ0:38 J=kg;

ql ¼ 744:11� 0:771 � ðT � 300Þ kg=m3;

cl ¼ 2180þ 4:1 � ðT � 300Þ J=ðkg � KÞ;

where Tcr = 659 K is the n-dodecane critical temperature.
These and other properties used in the paper were compiled

from different sources, including [37,38].
When calculating average liquid density and specific heat

capacity, T in the last two expressions is replaced with the average
temperature T.

2.2. Kinetic region

As in [7–10], the evolution of the molecular velocity distribu-
tion functions of air fa � fa(r, t,v) and vapour fv � fv(r, t,v) in the ki-
netic region is controlled by the corresponding Boltzmann
equations:

@fa
@t þ va

@fa
@r ¼ Jaa þ Jav

@fv
@t þ vv

@fv
@r ¼ Jva þ Jvv

)
; ð17Þ

where Jab (a = a, v; b = a, v) are collision integrals, taking into ac-
count the contribution of the collisions between molecules. Our ap-
proach to the solution of these equations, taking into account the
effects of inelastic collisions, is discussed in Section 3.

Eqs. (17) are solved subject to the boundary conditions at the
interface between the kinetic and liquid phase regions and at the
interface between the kinetic and hydrodynamic regions. The first
boundary condition for the fuel vapour can be presented as:

fv ðoutÞ ¼ bfvs þ ð1� bÞfvr; ð18Þ

where fvs is the distribution function of molecules leaving the liquid
surface assuming that b = 1, fvr is the distribution function of
reflected molecules. Both fvs and fvr are assumed to be isotropic
Maxwellian. The temperature for fvs is assumed to be equal to Ts,
while the temperature for fvr is assumed to be equal to TRd. This is jus-
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tified by the fact that the thickness of the kinetic region is small and
the gas temperature just above the droplet surface is close to TRd[2].

As shown in [19], a more accurate approximation for fvr would
have been a bi-Maxwellian distribution, but this effect is not taken
into account in our paper.

At the boundary between the kinetic and hydrodynamic regions
the distribution function of both fuel vapour and air molecules
entering the kinetic region is assumed to be Maxwellian, controlled
by qRd and TRd. Further details of the boundary conditions used for
kinetic calculations are discussed in [8].

The contributions of both mass and heat transfer in the kinetic
region are taken into account following the approach described in
[9]. At first, as in [7–10], it will be assumed that the evaporation
coefficient b is equal to 1. Then the effects of realistic b on droplet
heating and evaporation will be investigated.

2.3. Hydrodynamic region

As in [7–10], it is assumed that the mass fluxes leaving the ki-
netic region and the corresponding diffusion fluxes in the hydrody-
namic region are matched.

Mv

NA

Z þ1

�1
dvy

Z þ1

�1
dvz

Z þ1

0
dvxvxfvðr; t;vÞ

¼ qtotalDva

Rd
lnð1þ BMÞ � jh ¼ jv; ð19Þ

where qtotal is the density of the mixture of air and vapour at the
inner boundary of the hydrodynamic region (qtotal = qvRd/YvRd), Dva

is the binary diffusion coefficient (diffusion of vapour through
air), jh is the mass flux of evaporated fuel. BM takes into account
the effect of the finite mass fraction of fuel vapour on the evapora-
tion process. The binary diffusion coefficient is calculated from the
following expression [39]:

Dva ¼ 1:8583� 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3

r
1

Mv
þ 1

Ma

� �s
1

p r2
vaXD;va

; ð20Þ

where Dva is in m2/s, p is in atm (1 atm � 1.01 � 105 Pa), rva = 0.5
(rv + ra) is the average diameter of molecules of vapour and air (in
m � 10�10), XD,va is the function of T	 � kBTr=eva; eva ¼

ffiffiffiffiffiffiffiffiffi
evea
p

; ev

and ea are Lennard-Jones parameters for fuel vapour and air [34], kB

is the Boltzmann constant, Tr ¼ Ts þ 1
3 ðTg � TsÞ is the reference

temperature, Ts is the droplet surface temperature, Tg is the ambient
gas temperature.

In accordance with [39] the following approximation for XD,va is
used:

XD;va¼
1:06036
T	0:15610 þ

0:19300
expð0:47635T	Þþ

1:03587
expð1:52996T	Þþ

1:76474
expð3:89411T	Þ :

As in [9], the following values are used for most of our analysis:
rv = 9.373 � 10�10m, ra = 3.667 � 10�10m, ev/kB = 351.0 K, and
ea/kB = 97.0 K [34].

The heat flux supplied to the droplet is estimated as:

qs ¼ hðTg � TRdÞ; ð21Þ

where, as in [9], the convection heat transfer coefficient h is ob-
tained from the equation:

h ¼ kmix

Rd

lnð1þ BTÞ
BT

; ð22Þ

kmix is the thermal conductivity of the mixture of vapour and air, BT

is the Spalding heat transfer number calculated as [6]:
BT ¼ ð1þ BMÞu � 1; ð23Þ

u ¼ cpv

cpg

� �
1
Le
¼ cpvqmixDva

kmix
: ð24Þ

Le = kmix/(cpgqmixDva) is the Lewis number, cpv and cpg are specific
heat capacities of the fuel vapour and ambient gas (air), respec-
tively. Note that u does not depend on cpg. Eq. (24) is strictly speak-
ing valid for stationary droplets only [34]. However, as shown in
[40] the values of average droplet temperatures calculated using
this formula are almost indistinguishable from the values predicted
by the models, taking into account the non-zero droplet velocities.

Based on [9] the following approximations for cpv, kv and ka are
used

cpv ¼ 1594:60þ 1:15~T � 100:56~T2 � 28:56~T3 þ 5:07~T4

� 0:25~T5 J=ðkg � KÞ;
kv ¼ 0:02667 � ðTr=300Þ � 0:02087 W=ðm KÞ;
ka ¼ 3:227 � 10�3 þ 8:3894 � 10�5 � Tr � 1:9858 � 10�8 � T2

r W=ðmKÞ;

where ~T ¼ ðTr � 300Þ=300; Tr is the reference temperature, defined
earlier.

The thermal conductivity of the mixture of fuel vapour and air is
estimated as [9]

kmix ¼
X2

i¼1

XikiP2
j¼1XjUij

W=ðm KÞ;

where i and j stand for fuel vapour or air, Xi and Xj are molar frac-
tions of species i and j,

Uij ¼
1ffiffiffi
8
p 1þMi

Mj

� ��1=2

1þ ki

kj

� �1=2 Mj

Mi

� �1=4
" #2

;

Mi,j are molar masses of the corresponding species (Mv = 170.3 kg/
kmol, Ma = 28.97 kg/kmol [34]).

Following [9], the values of the saturated fuel vapour pressure
are estimated as:

pv ðsatÞ ¼ A1 � exp
Ts � A0

B1

� �
Pa; ð25Þ

where

A0 ¼ 300:17542
A1 ¼ 70:44441
B1 ¼ 22:36885

9>=
>; when Ts 
 440 K

A0 ¼ 449:87125
A1 ¼ 46204:48272
B1 ¼ 56:97142

9>=
>; when Ts > 440 K:

Eq. (25) is an alternative presentation of the Clausius–Clapeyron
equation [41]. Note that there is a typo in the corresponding equa-
tion presented in [9].

The processes in the kinetic and hydrodynamic regions are
linked by the matching conditions of conservation of mass flux
(see Eq. (19)) and heat flux

qk ¼ qh; ð26Þ

at the interface. Subscripts k and h refer to kinetic and hydrody-
namic regions respectively.

Note that Figs. 7–13 of [9] were based on a simplified version of
the above model for the hydrodynamic region. Namely, it was as-
sumed that XD,va = T⁄, u = 1, L = 250000 J/kg, ql = 586 kg/m3,
cl = 2900 J/(kg K), and kmix = 0.035 J/(m K). These simplifications
were justified by the fact that the main focus of [9] was on the
comparison of the predictions of hydrodynamic and kinetic models
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rather than on the most accurate predictions of droplet radii and
temperature during the heating and evaporation processes. In the
current paper, a considerably improved model is used as described
above.
3. Effects of inelastic collisions

In our previous papers [7–10], it was assumed that molecules
can be approximated as hard elastic spheres. In contrast to these
papers, however, we take into account the inelastic effects during
the collisions of these spheres, using a well known inelastic hard
spheres (IHS) model (see [42]). The details of our model for inelas-
tic collisions are given in [16]. Here the focus will be on a brief
summary of the background to the problem and this model.

Probably the first phenomenological model for binary collisions
in a gas mixture having continuous internal energy was developed
by Borgnakke and Larsen [43]. This model was applied to the
Monte Carlo simulation of rarefied gas flows. Since the publication
of this paper, a substantial number of papers have been published,
in which various models of inelastic collision have been consid-
ered. These are some examples: [44–54].

The model used in this paper is different from those suggested
earlier, although it is based on some widely used assumptions,
such as the approximation of molecules by inelastic hard spheres
(IHS). Although this model has been tested for some rather specific
problems, its nature is rather general and it can be applied to any
molecules with arbitrary large numbers of internal degrees of free-
dom. This model, however, is expected to be the most effective for
the analysis of such complex molecules as n-dodecane, considered
in our previous papers.

Let us consider two colliding molecules. Regardless of the nat-
ure of the collision between them, their centre of mass is not af-
fected by this collision. The state of the molecules after the
collision is described in the reference system linked with this cen-
tre of mass. In this system, each of these molecules has three trans-
lational and a certain number of internal degrees of freedom, so
that the total number of degrees of freedom of both molecules is
equal to N. During the collisions, the energy of each molecule is
redistributed between the degrees of freedom, but the total num-
ber of degrees of freedom remains the same. Let us assume that
none of these degrees of freedom is preferable to any of the others.
This allows us to consider the redistribution of energy between
these degrees of freedom during the collision process as random.
For each of these degrees of freedom we allocate one dimension
in the N � dimensional space describing all degrees of freedom.
Once we have done this, we consider a sphere in this space with
its centre at the origin (where energies of all degrees of freedom
are equal to zero) and radius given by the following expression:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1 Ei

q
, where Ei is the energy of the ith degree of freedom

(translational or internal). Since r2 gives the total energy of the sys-
tem Ef, this equation can be considered as an equation of the con-
servation of energy at the surface of the sphere in the centre of
mass system of reference.

The location of the points on the surface of this sphere can be
described by an N � dimensional vector X = (x1,x2, . . .xN) with
the basis (e1,e2, . . .eN) and the norm kXk ¼ r ¼

ffiffiffiffiffi
Ef

p
. The redistribu-

tion of energy between the degrees of freedom during the collision
process can be described in terms of the rotation of vector X in the
N-dimensional space. If none of the degrees of freedom is prefera-
ble to any of the others, then this rotation of the vector X can be
considered as random. In the most general form it can be described
by the following equation:

X0 ¼ AX; ð27Þ
where X0 is the new position of vector X after rotation, A is the rota-
tion matrix:

A ¼

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . . . . . . . .

aN1 aN2 . . . aNN

2
6664

3
7775:

The conservation of the total energy during the collision process im-
plies that vector X0 remains at the surface of the sphere of radius r.
This is possible if and only if

ATA ¼ E; ð28Þ

where AT is the transpose of the matrix A, E is the unit matrix.
Eq. (28) can be presented in a more explicit form as the combi-

nation of the following systems of equations

a2
11 þ a2

21 þ . . .þ a2
N1 ¼ 1

a2
12 þ a2

22 þ . . .þ a2
N2 ¼ 1

. . .

a2
1N þ a2

2N þ . . .þ a2
NN ¼ 1

9>>>=
>>>;
; ð29Þ

a11a12 þ a21a22 þ . . .þ aN1aN2 ¼ 0
a11a13 þ a21a23 þ . . .þ aN1aN3 ¼ 0
. . .

a11a1N þ a21a2N þ . . .þ aN1aNN ¼ 0

9>>>=
>>>;
; ð30Þ

� � �

a1ðN�1Þa1N þ a2ðN�1Þa2N þ . . . :þ aNðN�1ÞaNN ¼ 0: ð31Þ

When writing Eqs. (30) and (31) identical equations have been
excluded. The total number of Eqs. (30) and (31) is

ðN � 1Þ þ ðN � 2Þ þ ðN � 3Þ þ . . . :þ 1 ¼ N
2
ðN � 1Þ

for N2 unknown coefficients aij. This allows us to take randomly
N2 � N

2 ðN � 1Þ ¼ N
2 ðN þ 1Þ of these coefficients with an additional

restriction imposed by Eq. (29) (normalisation condition).
The following procedure for the construction of the components

matrix A is suggested.

1. The coefficients a11, a21, . . . , aN1 are arbitrarily chosen but nor-
malised based on the first equation in System (29).

2. The coefficients a12, a22, . . . , a(N�1)2 are arbitrarily chosen, while
the value of the coefficient aN2 is found from the first equation
of System (30):
aN2 ¼ �
1

aN1
ða11a12 þ a21a22 þ � � � þ aðN�1Þ1aðN�1Þ2Þ: ð32Þ
Then all coefficients are normalised based on the second equa-
tion in System (29).

Following the same procedure all other components of the ma-
trix A are found, and this allows us to calculate X0 based on Eq. (29).

The numerical algorithm used in the analysis is based on the
method of direct numerical solution of the Boltzmann equation,
described in [55,56]. It includes the following steps. Physical and
velocity spaces are discretised along with time. Time and physical
space are discretised as in conventional structured computational
fluid dynamics (CFD) codes. The discretisation of the velocity space
is performed similarly to the physical space by replacing continu-
ous values of v with a discrete set {vk}M, where k indicates the po-
sition of a velocity cell, M is the total number of cells. The
boundaries of the velocity domain in vx, vy, vz directions are chosen
in such a way that the contribution of molecules with velocities
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Fig. 2. A projection of the surface of an N-dimensional sphere, describing the
energies referring to translational and internal degrees of freedom of two colliding
molecules, in a two dimensional space referring to two translational degrees of
freedom. p and p⁄ show the locations of the molecular momenta before the
collision. The dashed circle shows possible locations of molecular momenta after
the collision if the contribution of internal degrees of freedom is ignored. The thin
solid circle shows possible locations of molecular momenta after the collision if
molecular internal energy increases during the collision. The thick solid circle
shows possible locations of molecular momenta after the collision if molecular
internal energy decreases during the collision. p0 and p⁄

0
show the allowed locations

of the molecular momenta after the collision if molecular internal energy decreases
during the collision.
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outside this range can be ignored. The difference between minimal
and maximal values of the velocities was taken to be equal to 5 or 6
average thermal speeds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2RaTa
p

. Due to the difference in Ra for dif-
ferent gas components, the ranges of velocities for these compo-
nents are also different.

For each value of vk
a, the corresponding value of f k

a is specified.
This allows us to present Eq. (17) for each gas component in a dis-
cretised form:

Df 1
a

Dt þ v1
a

Df 1
a

Dr ¼ J1
aa þ J1

ab

. . .
Df k

a
Dt þ vk

a
Df k

a
Dr ¼ Jk

aa þ Jk
ab

. . .
Df M

a
Dt þ vM

a
Df M

a
Dr ¼ JM

aa þ JM
ab

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

M

: ð33Þ

The boundary and initial conditions for the distribution functions
are taken into account.

After calculation of Jk
ab for each cell vk

a, the non-linear system of
integral–differential equation (17) reduces to the linear system of
algebraic Eq. (33), presented for both gas components. Following
[55], the numerical solution of System (33) is performed in two
steps. Firstly, molecular displacements are calculated ignoring

the effect of collisions Jk
aa ¼ Jk

ab ¼ 0
� �

. Secondly, the collisional

relaxation is calculated under the assumption of spatial
homogeneity.

The numerical solution of Eq. (33) at the first step is performed
following the explicit approach. The validity of the Courant
condition:

Dt maxðjvxj; jvyj; jvzjÞ < minðDx;Dy;DzÞ ð34Þ

is assumed. Condition (34) guarantees that even the fastest mole-
cules cannot cross more than one cell boundary in any of the direc-
tions x, y or z.

At the next step, the displacement of molecules stops and they
start colliding. Again using the explicit approach, each equation in
System (33) can be written as:

f k;n
a � ~f k;n�1

a

Dt
¼ Jk;n�1

aa þ Jk;n�1
ab ; ð35Þ

where � indicates the value of the distribution function calculated
at the first step, additional superscripts n � 1 and n indicate consec-
utive time steps. Eq. (35) are to be solved in each cell in the physical
space.

Further details of the implementation of this algorithm are de-
scribed in [7].

A model for inelastic collisions, described earlier, allows us to ob-
tain the energies of all degrees of freedom after individual collisions.
However, we are interested only in the net change of the kinetic en-
ergy of each of two molecules during collisions in the centre of mass
reference system. This change in the kinetic energy can be described
in terms of the change of the radius of the three dimensional sphere,
which is the projection of the N-dimensional sphere on the three-
dimensional space, describing the kinetic energies of both colliding
molecules in three directions. This is schematically illustrated in
Fig. 2 for the case of the projection of the N-dimensional sphere on
the two-dimensional plane. Following [7], this space is presented
in terms of the components of momenta px and py of both colliding
molecules. Points p and p⁄ show the positions of molecules before
the collision. If the collisions were elastic, then the values of momen-
ta after collisions would lie on the dashed circle shown in Fig. 2,
being separated by 180�. Possible values of these momenta after
the collisions are shown as empty circles.

As mentioned in [7], randomly chosen directions of molecular
momenta after collision are likely to be the values of these
momenta lying between the values in the nodes of the discretised
momenta space. This eventually can lead to non-conservation of
momenta and energies during the collision process. To overcome
this problem, following [7] the momenta are discretised not only
during the description of molecular motion but also in the analysis
of the collision process. Namely, we assume that the momenta
after the collisions belong to an a priori chosen set of momenta,
which are nodes in the momenta space shown in Fig. 2. In the case
shown in Fig. 2, in the absence of inelastic collisions, there are 4
such points corresponding to 4 combinations of momenta of mol-
ecules after collision. The maximal number of these combinations
for the plane is 8. In the three dimensional case, the circumferences
shown in Fig. 2 turn into the surfaces of spheres and the maximal
number of possible intersection points increases to 24. This corre-
sponds to the maximal total number of combinations of momenta
after collision. This approach provides the consistency in discreti-
sation processes used for the description of molecular dynamics
and collisions. It has been tested on numerous problems, some of
which are discussed in [7–10].

If during the collision the net internal energy of molecules in-
creases, this has to be compensated for by a reduction in the ki-
netic energies of molecules, as the total energy of molecules
during the collision is conserved. This leads to the reduction of
the radius of the corresponding circle in Fig. 2. In the opposite case,
when the net internal energy of molecules decreases, this has to be
compensated for by an increase in the kinetic energies of mole-
cules, and also of the radius of the corresponding circle in Fig. 2.
Both cases are shown in Fig. 2 by solid circles. In the case of in-
creased net kinetic energy of molecules, possible values of the mo-
menta of both molecules after the collision are shown as the filled
black circles. These include points p0 and p0	. The changes of radii of
the circles after collision have been calculated based on Korobov’s
sequences ([57]), enhanced by the randomization of individual
points. As in the case of elastic collisions, the points p0 and p0	 are
chosen to coincide with the nodes of the discretised momenta
space.



Fig. 3. Plots of normalised heat flux in the kinetic region ~qk � qk=ðp0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ versus
normalised temperature ~TRd ¼ TRd=Ts for various numbers of internal degrees of
freedom Nint, assuming that Ts = T0 = 600 K. qRd is taken equal to 0.9 qs.
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The model described above could be generalised to the case
when the probabilities of excitation of various degrees of freedom
are not equal (for example, the three rotational modes are ex-
pected to be much more important than the vibrational modes).
This could be achieved by introduction of the weighting function,
and/or limiting the range of degrees of freedom to be activated.
We cannot, however, specify this weighting function in the case
of such complex molecules as n-dodecane, for which our model
has been primarily developed.

This approach does not include the analysis of specific internal
degrees of freedom and can be potentially applicable to any type of
inelastic collision. Moreover, the dependence of the effect of inelas-
tic collisions on the number of degrees of freedom was shown for
several examples to be strong for a small number of internal de-
grees of freedom, but rather weak for large numbers of degrees
of freedom (more than about 20). This allows us to restrict our
analysis to about 20 degrees of freedom when analysing the colli-
sions between complex n-dodecane molecules regardless of the ac-
tual number of degrees of freedom. This will be considered in more
detail in the next section.

The model described above was validated against the observed
distribution of the number density of Nitrogen in the vicinity of a
shock wave (see [16] for the details).
Fig. 4. Plots of normalised heat flux in the kinetic region ~qk versus normalised
density ~qRd ¼ qRd=qs for Nint = 20 and ~TRd ¼ 1:1 and 1.2.
4. Solution algorithm

The idea of the solution algorithm used in the analysis is similar
to the one described in [9]. As in [9], the first step in the solution of
Eq. (17) is to perform an investigation of mass and heat transfer
processes in the kinetic region for a set of values of qRd and TRd.
Remembering that we consider the problem of heating and evapo-
ration of droplets in a hot gas, these parameters are assumed to be
in the ranges: qRd < qs and TRd > Ts. During the droplet heating pro-
cess the temperature increases away from the droplet; the evapo-
ration process is possible when the fuel vapour density decreases
away from the droplet surface. Once the values of qRd and TRd have
been found, the solution of the Boltzmann equations (17) in the ki-
netic region allows us to calculate the normalised mass and heat
fluxes at the outer boundary of this region:

~jk ¼ jk=ðq0

ffiffiffiffiffiffiffiffiffiffi
RvT0

p
Þ; ~qk ¼ qk=ðp0

ffiffiffiffiffiffiffiffiffiffi
RvT0

p
Þ;

where Rv is the gas constant referring to fuel vapour, T0 is the refer-
ence temperature chosen equal to 600 K, p0 and q0 are the saturated
fuel vapour pressure and density corresponding to T0, q0 is calcu-
lated from the ideal gas law, subscript k stands for kinetic.

We assume that qRd = 0.9qs and Ts = T0 = 600 K. The values of ~qk

were calculated for the numbers of internal degrees of freedom Nint

from 0 to 50 and ~TRd ¼ TRd=Ts from 1 to 1.4. The results are shown
in Fig. 3. As follows from this figure, for all values of Nint the depen-
dence of ~qk on ~TRd is well described by a linear function, in agree-
ment with the case reported in [9]. For any given ~TRd the values of
~qk decrease with increasing Nint. The rate of this decrease, however,
becomes small for Nint > 10 and negligible for Nint > 20. This allows
us to restrict our analysis to the case of Nint = 20, in agreement with
the conclusion reached in [16].

The plots of ~qk versus ~qRd � qRd=qs for ~TRd ¼ 1:1 and 1.2 and
Nint = 20 are shown in Fig. 4. As one can see in this figure, the plots
for these values of ~TRd are the lines almost parallel to the ~qRd axis.
This allows us to ignore the dependence of ~qk on ~qRd in agreement
with the similar result obtained in [9] for Nint = 0.

The plots of ~qk versus ~TRd for ~qRd ¼ 1; Nint ¼ 0 and 20, and
~qh ¼ qh=ðp0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ versus ~TRd (horizontal line) are shown in
Fig. 5. The following values of parameters were used: Tg = 1000 K,
TRd = 600 K, Rd = 5 lm. The intersections between the horizontal
and inclined lines give the required values of ~TRd. For the case of
only elastic collisions ðNint ¼ 0Þ; ~TRd ¼ 1:014, for the case when
the contribution of inelastic collisions with Nint = 20 is taken into
account ~TRd ¼ 1:026. This result indicates that the contribution of
internal degrees of freedom leads to an increase in ~TRd.

The plots of ~jk versus ~qRd for ~TRd ¼ 1:026;Nint ¼ 0 and 20, and
~jh ¼ jh=ðp0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ versus ~qRd (horizontal line) are shown in Fig. 6.
This figure is presented for the same parameters as Fig. 5. Follow-
ing [9], it was assumed that qRd in Eq. (19) can be replaced with qs.

The intersections between the horizontal and inclined lines give
the required values of ~qRd. For the case of only elastic collisions
ðNint ¼ 0Þ; ~qRd ¼ 0:968; for the case when the contribution of
inelastic collisions with Nint = 20 is taken into account,
~qRd ¼ 0:926. This result indicates that the contribution of internal
degrees of freedom leads to a decrease in ~qRd.

Similar values of ~TRd and ~qRd were obtained for other values of Tg

and Rd relevant for Diesel engine conditions (Tg = 750 K and
Rd = 20 lm) and for values of Ts in the range 300 K to close to the
critical temperature. The corresponding values of ~TRd and ~qRd were
used for the analysis of heating and evaporation of n-dodecane
droplets in realistic Diesel engine-like conditions. The results will
be presented in Section 5.

For realistic b < 1 the values of ~qk were practically indistinguish-
able from those predicted by the model for b = 1. The plots of~jk ver-
sus ~qRd for ~TRd ¼ 1:026; Nint ¼ 20 and b = 1 and 0.36 are shown in



Fig. 5. Plots of ~qk versus ~TRd for Nint = 0 and 20, and the plot of ~qh � qh=ðp0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ
versus ~TRd for T0 = Ts = 600 K, Tg = 1000 K, Rd0 = 5 lm and ~qRd ¼ 1. The intersections
between the plots of ~qk and ~qh give the required values of ~TRd .

Fig. 6. Plots of ~jk � jk=ðq0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ versus ~qRd for Nint = 0 and 20, and the plot of
~jh � jh=ðq0

ffiffiffiffiffiffiffiffiffiffi
RvT0
p

Þ versus ~qRd for T0 = Ts = 600 K, Tg = 1000 K, Rd0 = 5 lm and
~TRd ¼ 1:026. The intersections between the plots of ~jk and ~jh give the required
values of ~qRd .

Fig. 7. Plots of ~jk versus ~qRd for Nint = 20 and b = 1 and 0.36 versus ~qRd for
T0 = Ts = 600 K, Tg = 1000 K, Rd0 = 5 lm and ~TRd ¼ 1:026.

Fig. 8. Plots of Rd versus time t for an n-dodecane droplet, predicted by the
hydrodynamic ITC model (Curves 1), the kinetic ITC model, ignoring the effects of
inelastic collisions (Curves 2), the kinetic ITC model, taking into account the effects
of inelastic collisions (Curves 3), the hydrodynamic ETC model (Curves 4), the
kinetic ETC model, ignoring the effects of inelastic collisions (Curves 5), and the
kinetic ETC model, taking into account the effects of inelastic collisions (Curves 6)
(a). Zoomed part of (a) showing the plots at the final stage of the evaporation
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Fig. 7. The plot for b = 1 is identical to the one shown in Fig. 6, but
presented in a wider range of ~qRd. The value of b = 0.36 is close to
the one predicted for Ts = 600 K. This will be discussed in Section 6.
Note that it would be difficult for us to quantify the error of this
estimate of b, due both to the uncertainty of molecular dynamic
simulations (only 720 molecules were used) and to extrapolation
of the results of these simulations (see Eq. (36).

As follows from Fig. 7, the linear dependence of ~jk on ~qRd is
maintained for b = 0.36, but the values of ~jk predicted by the model
with b = 0.36 are lower than those predicted by the model with
b = 1. The values of the mass flux for other values of b > 0.36 are ex-
pected to lie between the plots corresponding to b = 0.36 and b = 1.
We follow the same procedure of calculating ~qRd as described ear-
lier for b = 1 and shown in Fig. 6. As one can see from Fig. 7, this
leads to the prediction of lower values of ~qRd for b = 0.36 than for
b = 1. Thus the reduction of b is expected to lead to the enhance-
ment of the kinetic effects.
process (b). All plots are shown for Tg = 750 K, Td0 = 300 K, Rd0 = 5 lm.
5. Results (b = 1)

The algorithm described above was applied to computation of
the heating and evaporation of Diesel fuel droplets in a hot gas
at two temperatures (750 K and 1000 K). The initial droplet
temperature and gas pressure in all cases were assumed equal to
300 K and 30 bar respectively. The initial droplet radii were
assumed to be equal to 5 lm. Droplets were assumed to be
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stationary, but the effect of swelling was taken into account. The
calculations were performed using the Infinite Thermal Conductiv-
ity (ITC) and Effective Thermal Conductivity (ETC) models for the
liquid phase, conventional hydrodynamic model, described in Sec-
tion 2, and kinetic models taking and not taking into account the
effects of inelastic collisions. The value of the evaporation coeffi-
cient was assumed equal to 1 in all cases.

The results of calculation of the radii and surface tempera-
tures of droplets immersed into gas with temperature 750 K
are shown in Figs. 8 and 9, respectively. As follows from
Fig. 9, at the initial stage of droplet heating and evaporation,
the kinetic effects on temperature are negligible, but the differ-
ence in temperatures, predicted by the hydrodynamic models
taking and not taking into account the effects of liquid finite
thermal conductivity, is quite noticeable. This is consistent with
the results earlier reported in [58]. Initially the droplet surface
temperature, predicted by the ETC model is larger than the
one predicted by the ITC model, as expected. This larger droplet
surface temperature predicted by the ETC model leads to the
reduction of the heat flux supplied to the droplet, which eventu-
ally leads to the situation when the droplet surface temperature
predicted by the ETC model becomes smaller than the one pre-
dicted by the ITC model. This happens at times close to 0.4 ms.
Smaller temperatures, predicted by the ETC model at this stage,
lead to slightly slower evaporation rate and longer evaporation
time of droplets as shown in Fig. 8.

As follows from Fig. 8, the kinetic models, taking and not taking
into account inelastic collisions, predict longer evaporation times
compared with the hydrodynamic ETC and ITC models, in agree-
Fig. 9. The same as Fig. 8 but for Ts.
ment with the prediction of the model described in [9]. The kinetic
model, taking into account inelastic collisions, predicts longer
evaporation times compared with the model ignoring this effect,
in agreement with the prediction of Fig. 6. Similar enhancement
of the kinetic effects due to the contribution of inelastic collisions
can be observed from the temperature curves shown in Fig. 9.

The results of calculation of the radii and surface temperatures
of droplets immersed into gas with temperature 1000 K are shown
in Figs. 10 and 11, respectively. As in the case shown in Fig. 9, it fol-
lows from Fig. 11 that at the initial stage of droplet heating and
evaporation, the kinetic effects on temperature are negligible, but
the difference in temperatures, predicted by the hydrodynamic
models taking and not taking into account the effects of liquid fi-
nite thermal conductivity, is noticeable. Initially the droplet sur-
face temperature predicted by the ETC model is larger than the
one predicted by the ITC model as expected, but at times larger
than about 0.25 ms the surface temperature predicted by the ETC
model becomes smaller than the one predicted by the ITC model.
In contrast to the case shown in Fig. 8, in the case shown in
Fig. 10 the net effects of the increase of the temperature predicted
by the ETC model before 0.25 ms and its decrease at times after
0.25 ms lead to shorter evaporation time predicted by the ETC
model compared with the ITC model.

As in the case shown in Figs. 8 and 9, for gas temperature equal
to 1000 K the kinetic models, taking and not taking into account
inelastic collisions, predict longer evaporation times and higher
temperatures at the final stage of droplet evaporation, compared
with the hydrodynamic ETC and ITC models. Also, as in the case
shown in Figs. 8 and 9, the kinetic model, taking into account
inelastic collisions, predicts longer evaporation times and higher
Fig. 10. The same as Fig. 8 but for Tg = 1000 K.



Fig. 11. The same as Fig. 9 but for Tg = 1000 K.

Table 1
Condensation/evaporation coefficient as a function of the liquid temperature.

Ts (K) b

400 0.93
450 0.72
500 0.59
550 0.45

Fig. 12. Plots of Rd and Ts versus time t for an n-dodecane droplet, predicted by the
hydrodynamic ITC model (Curves 1), the kinetic ITC model, ignoring the effects of
inelastic collisions and non-unity of b (Curves 2), the kinetic ITC model, taking into
account the effects of inelastic collisions but ignoring the non-unity of b (Curves 3),
and the kinetic ITC model, taking into account the effects of inelastic collisions and
the non-unity of b, which is calculated based on Eq. (36) (Curves 4) (a). Zoomed part
of (a) showing the values of Rd at the final stage of the evaporation process (b). All
plots are shown for Tg = 1000 K, Td0 = 300 K, Rd0 = 5 lm.
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temperatures at the final stage of droplet evaporation, compared
with the model ignoring this effect. These kinetic effects are stron-
ger in the case shown in Figs. 10 and 11 than in the case shown in
Figs. 8 and 9.

6. Results (b < 1)

As mentioned earlier, in our previously described kinetic mod-
els we assumed that b = 1 (see [7–10]). This was justified by the
fact that no reliable experimental data or theoretical predictions
of b were available at that time. The situation changed after the
publication of papers [17,18], where a new model for molecular
dynamic simulations of n-dodecane was suggested. Using this
model, the authors of [17,18] obtained the values of b at various
surface temperatures relevant to Diesel engine conditions. These
values are shown in the following table, based on the most com-
prehensive calculations presented in [18].

The temperature dependence of b inferred from Table 1 can be
approximated as:

bðTsÞ ¼ 7� 10�6T2
s � 9:8� 10�3Ts þ 3:7215: ð36Þ

For Ts = 600 K Eq. (36) predicts b = 0.36. This value of b was used
for the plot presented in Fig. 7.

In what follows the effects of b < 1 on n-dodecane droplet heat-
ing and evaporation will be presented for the ITC model only. These
effects for the ETC model are similar to those for the ITC model.

The results of calculation of the radii and surface temperatures
of droplets with initial radii equal to 5 lm immersed into gas with
temperature 1000 K using the ITC model with b = 1 and b predicted
by Eq. (36) are shown in Fig. 12. The plots for b = 1 are the same as
shown in Figs. 10 and 11. As one can see from this figure, the effect
of b < 1 on droplet radius and temperature in this case is small and
can be safely ignored in most practical applications. For gas tem-
perature equal to 750 K this effect is even smaller than in the case
of gas temperature equal to 1000 K. This means that the results of
the analysis for b = 1 presented in Section 5 and in our previous pa-
pers ([7–10]) are applicable for the realistic case b < 1.

Let us now consider a hypothetical case when a droplet with
initial radius equal to 5 lm is immersed into gas with temperature
1500 K. The results of calculation of the radii and surface temper-
atures of droplets in this case are shown in Fig. 13. As one can
see from this figure, in this case the effect of b < 1 is much more
visible than in the case shown in Fig. 12. This effect leads to
increased droplet evaporation time, thus enhancing the kinetic



Fig. 13. The same as Fig. 12 but for Tg = 1500 K.
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corrections to the prediction of the hydrodynamic model. Note that
in the case of this gas temperature, the droplet surface temperature
approaches the critical temperature at the final stage of droplet
evaporation. In this case the hydrodynamic model used in our
analysis is expected to contain uncontrollable errors.

As to the computational efficiency of the model, we note that
for a PC Intel Core (TM) 2 Quad CPU Q9550 2.83 GHz with
3.00 GB RAM (only one processor used) in a 32-bit Operating Sys-
tem, the kinetic calculations required about two hours for one case
for a given surface temperature. Hydrodynamic calculations re-
quired just a few minutes.

At this stage it would be difficult (although not impossible) to
perform the validation of the results shown in Figs. 8–13, as the
corrections due to the kinetic effects are comparable with errors
of measurements of the input parameters of the model. The latter
include gas temperature, droplet temperature and radius, gas
velocity and others. These results, however, clearly show the errors
which would be expected if the kinetic effects are ignored. It is un-
likely that kinetic calculations will ever be incorporated into com-
putational fluid dynamics (CFD) codes. The results of these
calculations, however, can potentially be approximated by simple
formulae as the perturbations to the hydrodynamic calculations.
The preliminary results in this direction were discussed in [10].
7. Conclusions

The previously developed kinetic model for droplet heating and
evaporation into a high pressure background gas (air) has been
generalised to take into account the combined effects of inelastic
collisions in the kinetic region, a non-unity evaporation coefficient
and temperature gradient inside droplets. The Infinite Thermal
Conductivity (ITC) and Effective Thermal Conductivity (ETC) liquid
phase models have been used in the analysis. The effects of inelas-
tic collisions have been investigated based on the model developed
in [16]. The values of the evaporation coefficient, used in the anal-
ysis, have been obtained in [18] based on the molecular dynamics
simulation of n-dodecane molecules. As in [9] both heat and mass
transfer in the kinetic region have been taken into account. The
boundary conditions at the outer boundary of the kinetic region
have been introduced by matching the mass fluxes of vapour leav-
ing the kinetic region and entering into the surrounding hydrody-
namic region, and the corresponding heat fluxes.

It has been pointed out that for the parameters typical for Diesel
engine-like conditions, the heat flux in the kinetic region is a linear
function of the vapour temperature at the outer boundary of this
region, but practically does not depend on vapour density at this
boundary for all models, including and not including the effects
of inelastic collisions, and including and not including the effects
of a non-unity evaporation coefficient. For any given temperature
at the outer boundary of the kinetic region the values of the heat
flux have been shown to decrease with increasing numbers of
internal degrees of freedom of the molecules. The rate of this de-
crease has been shown to be strong for small numbers of these de-
grees of freedom but becomes negligible when the number of
degrees of freedom exceeded 20.

The mass flux at this boundary has been shown to decrease al-
most linearly with increasing vapour density at the same location
for all above-mentioned models, as in the case considered in [9].
For any given vapour density at the outer boundary of the kinetic
region, the values of the mass flux have been shown to be smaller
for the model taking into account the contribution of internal de-
grees of freedom than for the model ignoring these degrees of free-
dom (taking into account the contribution of only elastic
collisions). Remembering these properties of the heat and mass
fluxes, and using the matching conditions at the outer boundary
of the kinetic region, the values of temperature and fuel vapour
density at this boundary have been found following the procedure
earlier described in [9].

It has been shown that the effects of inelastic collisions lead to a
stronger increase in the predicted droplet evaporation time in Die-
sel engine-like conditions relative to the prediction of the hydrody-
namic model, compared with the similar increase predicted by the
kinetic model considering only elastic collisions. The effects of a
non-unity evaporation coefficient have been shown to be notice-
able for gas temperatures of 1500 K. At the initial stage of droplet
heating and evaporation the surface temperatures predicted by the
ETC model have been shown to be larger that those predicted by
the ITC model, in agreement with our earlier results (e.g. [58]).

The application of the rigorous kinetic model, taking into ac-
count the effects of inelastic collisions, a non-unity evaporation
coefficient, and the ETC model, is recommended when accurate
predictions of the values of droplet surface temperature and evap-
oration time in Diesel engine-like conditions are essential.
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