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The effect of inelastic collisions between two molecules on the solution of the Boltzmann
equation is taken into account by presenting the change of state of molecules after colli-
sions as a random (with uniform probability distribution) movement along a surface of
an N-dimensional sphere, the squared radius of which is equal to the total energy of the
molecules before and after the collision in the reference system of the centre of mass.
The projection of a point on the surface of this sphere in each of N directions gives the root
square of the kinetic energy in one of three directions in the physical space, or the internal
energy of one of degrees of freedom, of one of two molecules. The kinetic energies of two
molecules are described by the first six dimensions of the system, and the remaining
ðN � 6Þ dimensions describe the internal energies. This approach is applied to three test
problems: shock wave structure in nitrogen, one-dimensional heat transfer through a mix-
ture of n-dodecane and nitrogen and one-dimensional evaporation of n-dodecane into
nitrogen. In the first problem, the predictions of the model are shown to be close to exper-
imental data and also to the predictions of the earlier developed model, based on a differ-
ent approach to taking into account the effects of inelastic collisions. The predicted heat
flux for the second problem and mass flux for the third problem are shown to be very weak
functions of the number of internal degrees of freedom when this number exceeds about
15. These results open the way for considering systems with arbitrarily large numbers of
internal degrees of freedom by reducing the analysis of these systems to the analysis of
systems with relatively small numbers of internal degrees of freedom.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

A widely used engineering approach to modelling evaporation/condensation processes is based on the hydrodynamic
approximation (see [22]). The limitation of this approach, even in the case of evaporation at high pressures, has been dis-
cussed in a number of papers, including [16,29,27,23,28]. In these papers the evaporation of n-dodecane C12H26 (the nearest
approximation for Diesel fuel) has been considered and a new model for the analysis of droplet heating and evaporation has
been developed based on a combination of the kinetic and hydrodynamic approaches. In the immediate vicinity of droplet
surfaces (up to about 100 molecular mean free paths), the vapour and ambient gas dynamics have been studied based on the
Boltzmann equation (kinetic region), while at larger distances the analysis has been based on the hydrodynamic equations
(hydrodynamic region). Mass, momentum and energy fluxes have been conserved at the interface between these regions.

The model developed in these papers is based on a number of assumptions, the most serious of which is that the
contribution of inelastic collisions has been ignored. This assumption could have been justified in the case of mono-atomic
. All rights reserved.
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molecules, but appears to be highly questionable in the case of such complex molecules as C12H26 considered in the above
mentioned papers. Even if the analysis of the dynamics of these molecules is simplified by considering the United Atom Mod-
el (see [7,34] for details), the number of internal degrees of freedom of this molecule is expected to exceed 100. There seems
to be no justification for ignoring their contribution.

Perhaps the first phenomenological model for binary collisions in a gas mixture having continuous internal energy was
developed by [6]. This model was applied to Monte Carlo simulation of rarefied gas flows. Since the publication of this
pioneering paper, a substantial number of papers have been published, in which various models of inelastic collision have
been considered. Without making any attempt to present an extensive list of these papers we mention
[33,14,9,4,5,3,8,10,21,30,17,15,11]. This list does not include papers where the models for collisions of specific atoms and
molecules have been considered, such as H2–H2 collisions [35], N–N2 collisions [12] and H–N2 collisions [31]. Also, it does
not include papers where the effects of inelastic collisions on transport coefficients are considered (e.g. [20]).

The model suggested in this paper is different from those suggested earlier, although it is based on some widely used
assumptions, such as the approximation of molecules by inelastic hard spheres (IHS). Although this model has been tested
for some rather specific problems, its nature is rather general and it can be applied to any molecules with arbitrary large
numbers of internal degrees of freedom. This model is expected to be the most effective for the analysis of such complex
molecules as n-dodecane, considered in our previous papers.

Basic ideas of the new model are discussed in Section 2. In Section 3 this model is applied to the analysis of three test
cases. The main results of the paper are summarised in Section 4.

2. Mathematical model

2.1. A model for inelastic collisions

As in our previous papers [29,27,23,28], we assume that the molecules can be approximated as hard spheres. In contrast
to these papers, however, we take into account the inelastic effects during the collisions of these spheres, using a well known
inelastic hard spheres (IHS) model (see [21]). As in [29,27,23,28] only the effects of binary collisions are taken into account.
This is justified by the fact that the Boltzmann equation is solved in a very thin layer, the thickness of which is typically about
10 mean free paths.

Let us consider two colliding molecules. Regardless of the nature of the collision between them, their centre of mass is not
affected by this collision. The state of the molecules after the collision is described in the reference system linked with this
centre of mass. In this system, each of these molecules has three translational and a certain number of internal degrees of
freedom, so that the total number of degrees of freedom of both molecules is equal to N. During the collisions, the energies of
each molecule are redistributed between the degrees of freedom, but the total number of degrees of freedom remains the
same. Let us assume that none of these degrees of freedom has any preference over the others. This assumption implies that
we focus our attention on the systems close to thermodynamic equilibrium. The model is not applicable to the systems in the
states far from thermodynamic equilibrium, such as gas lasers (see [25,26]). Possible generalisation of the model to the case
when this assumption is not valid is discussed in the last paragraph of this section.

This assumption allows us to consider the redistribution of energy between these degrees of freedom during the collision
process as random with uniform probability distribution. For each of these degrees of freedom we allocate one dimension in
the N-dimensional space describing all degrees of freedom. Once we have done this, we consider a sphere in this space with
its centre at the origin (where energies of all degrees of freedom are equal to 0) and radius given by the following expression:
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼N

i¼1

r
Ei; ð1Þ
where Ei is the energy of the ith degree of freedom (translational or internal). Since r2 gives the total energy of the system Ef ,
Eq. (1) can be considered as an equation of the conservation of energy at the surface of the sphere in the centre of mass sys-
tem of reference.

Introducing the new coordinates xi ¼ �
ffiffiffiffi
Ei
p

, we can consider an N-dimensional vector
X ¼ ðx1; x2; . . . ; xNÞ
with the basis ðe1; e2; . . . ; eNÞ and the norm Xj jj j ¼ r ¼
ffiffiffiffiffi
Ef

p
, where Ef is the total energy of the system. The norms of all vec-

tors ei are equal to one and these vectors are mutually perpendicular.
The redistribution of energy between the degrees of freedom during the collision process can be described in terms of the

rotation of vector X in the N-dimensional space. For N ¼ 3 this is schematically shown in Fig. 1. If none of the degrees of
freedom has any preference over the others, then this rotation of the vector X can be considered as random with uniform
probability distribution. In the most general form it can be described by the following equation:
X0 ¼ AX; ð2Þ
where X0 is the new position of vector X after rotation, A is the rotation matrix:
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0

X
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Fig. 1. A schematic presentation of the rotation of vector X in the three dimensional space (e1; e2; e3).
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A ¼

a11 a12 � � � a1N

a21 a22 � � � a2N

� � � � � � � � � � � �
aN1 aN2 � � � aNN

2
6664

3
7775:
The conservation of the total energy during the collision process implies that vector X0 remains at the surface of the sphere of
radius r. This is possible if and only if
ATA ¼ E; ð3Þ
where AT is the transpose of the matrix A, E is the unit matrix
E ¼

1 0 � � � 0
0 1 � � � 0
� � � � � � � � � � � �
0 0 � � � 1

2
6664

3
7775:
Eq. (3) can be presented in a more explicit form as the combination of the following systems of equations
a2
11þ a2

21þ � � � þa2
N1 ¼ 1

a2
12þ a2

22þ � � � þa2
N2 ¼ 1

� � � � � � � � � � � �
a2

1Nþ a2
2Nþ � � � þa2

NN ¼ 1

9>>>=
>>>;
; ð4Þ

a11a12þ a21a22þ � � � þaN1aN2 ¼ 0
a11a13þ a21a23þ � � � þaN1aN3 ¼ 0
� � � � � � � � � � � �

a11a1Nþ a21a2Nþ � � � þaN1aNN ¼ 0

9>>>=
>>>;
; ð5Þ

a12a13þ a22a23þ � � � þaN2aN3 ¼ 0
a12a14þ a22a24þ � � � þaN2aN4 ¼ 0
� � � � � � � � � � � �

a12a1Nþ a22a2Nþ � � � þaN2aNN ¼ 0

9>>>=
>>>;
; ð6Þ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

a1ðN�1Þa1N þ a2ðN�1Þa2N þ � � � þ aNðN�1ÞaNN ¼ 0: ð7Þ
When writing Eqs. (5)–(7) identical equations have been excluded. The total number of Eqs. (5)–(7) is
ðN � 1Þ þ ðN � 2Þ þ ðN � 3Þ þ � � � þ 1 ¼ N
2
ðN � 1Þ
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for N2 unknown coefficients aij. This allows us to take randomly N2 � N
2 ðN � 1Þ ¼ N

2 ðN þ 1Þ of these coefficients with an addi-
tional restriction imposed by Eq. (4) (normalisation condition).

The following algorithm for the construction of the matrix A is suggested.

1. The coefficients a11; a21; . . . ; aN1 are arbitrarily chosen but normalised based on the first equation in System (4).
2. The coefficients a12; a22; . . . ; aðN�1Þ2 are arbitrarily chosen, while the value of the coefficient aN2 is found from the first

equation of System (5):
aN2 ¼ �
1

aN1
a11a12 þ a21a22 þ � � � þ aðN�1Þ1aðN�1Þ2
� �

: ð8Þ
Fig. 2. The values of energies of individual degrees of freedom (Ei) versus Ni at the initial state and after Steps 1–3.
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Then all coefficients are normalised based on the second equation in System (4).
3. The coefficients a13; a23; . . . ; aðN�2Þ3 are arbitrarily chosen, while the value of the coefficients aðN�1Þ3 and aN3 are found from

the solution of the second equation in System (5) and the first equation in System (6). These equations can be rearranged
as:
aðN�1Þ1aðN�1Þ3þ aN1aN3 ¼ b13

aðN�1Þ2aðN�1Þ3þ aN2aN3 ¼ b23

)
; ð9Þ
where
b13 ¼ � a11a13 þ a21a23 þ � � � þ aðN�2Þ1aðN�2Þ3
� �

;

b23 ¼ � a12a13 þ a22a23 þ � � � þ aðN�2Þ2aðN�2Þ3
� �

:

Then all coefficients are normalised based on the third equation in System (4).
Following the same procedure all other components of the matrix A are found, and this allows us to calculate X0 based on

Eq. (2). An example of the temporal evolution of the system with 100 degrees of freedom is shown in Fig. 2. The ordinate axis
in this figure shows the energies Ei referring to individual degrees of freedom Ni (i 2 ½1;100�). Initially all degrees of freedom
have energies equal to 1 (Ei ¼ 1). This is shown in the top part of this figure (Initial state). After the first step energies Ei ac-
quire random values in the range from 0 to 5, but the sum of all Ei remains the same as at the initial state (

Pi¼100
i¼1 Ei ¼ 100).

The nature of the distribution of Ei remains random after steps 2 and 3 although with different values of individual energies.
In principle, the value of one Ei can reach the maximal value of 100, provided that all other Ei are equal to 0, although this has
been never observed in our simulations.

The model described above could be generalised to the case when the probabilities of excitation of various degrees of
freedom are not equal. This could be achieved by introduction of the weighting function, and/or limiting the range of degrees
of freedom to be activated. We cannot, however, specify this weighting function in the case of such complex molecules as n-
dodecane, for which our model has been primarily developed, or even justify the need to introduce this function in this case.

2.2. An algorithm for the solution of the Boltzmann equation

Following [2], the numerical solution of the Boltzmann equation (for one or several components) is performed in two
steps. Firstly, molecular displacements are calculated ignoring the effect of collisions. Secondly, the collisional relaxation
is calculated under the assumption of spatial homogeneity.

Ignoring the effects of collisions, the discretised form of the Boltzmann equation, describing molecular displacements, for
each component can be presented as
Df
Dt
þ v

Df
Dr
¼ 0; ð10Þ
where f � f ðv; r; tÞ is the distribution function for the velocity (v) and physical spaces (r).
In this case, the total internal energy in each velocity range should be conserved, which implies that
DðEintf Þ
Dt

þ v
DðEintf Þ

Dr
¼ 0; ð11Þ
where Eint � Eintðv; r; tÞ are internal energies of molecules with given v and r at time t.
A model for inelastic collisions, described in the previous section, allows us to obtain the energies of all degrees of free-

dom after individual collisions as illustrated in Fig. 2. However, we are interested only in the net change of the kinetic energy
of each of two molecules during collisions in the centre of mass reference system. This change of the kinetic energy can be
described in terms of the change of the radius of the three dimensional sphere, which is the projection of the N-dimensional
sphere, described in the previous section, on the three-dimensional space, describing the kinetic energies of both colliding
molecules in three directions. This is schematically illustrated in Fig. 3 for the case of the projection of the N-dimensional
sphere on the two-dimensional plane. Following [29], this space is presented in terms of the components of momenta px

and py of both colliding molecules. Points p and p� show the positions of molecules before the collision. If the collisions were
elastic, then the values of momenta after collisions would lie on the dashed circle shown in Fig. 3, being separated by 180�.
Possible values of these momenta after the collisions are shown as empty circles.

As mentioned in [29], randomly chosen directions of molecular momenta after collision are likely to lead to the values of
these momenta lying between the values in the nodes of the discretised momenta space. This eventually can lead to non-
conservation of momenta and energies during the collision process. To overcome this problem, following [29] the momenta
are discretised not only during the description of molecular motion but also in the analysis of the collision process. Namely,
we assume that the momenta after the collisions belong to an a priori chosen set of momenta, which are nodes in the mo-
menta space shown in Fig. 3. This is achieved by moving the actual point on the surface of the sphere to the nearest node.
Since the nodes are not uniformly distributed on the surface of the sphere in the general case, this leads to partial loss of
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Fig. 3. A projection of the surface of an N-dimensional sphere, describing the energies referring to translational and internal degrees of freedom of two
colliding molecules, into a two dimensional space referring to two translational degrees of freedom. p and p� show the locations of the molecular momenta
before the collision. The dashed circle shows possible locations of molecular momenta after the collision if the contribution of internal degrees of freedom is
ignored. The thin solid circle shows possible locations of molecular momenta after the collision if molecular internal energy increases during the collision.
The thick solid circle shows possible locations of molecular momenta after the collision if molecular internal energy decreases during the collision. p0 and p0�
show the allowed locations of the molecular momenta after the collision if molecular internal energy decreases during the collision.
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randomness of the distribution of momenta after collisions. This is one of the weaknesses of the model under consideration,
but seems not to lead to serious limitations of the range of its applicability as demonstrated in Section 3.

In the case shown in Fig. 3, in the absence of inelastic collisions, there are four such nodes corresponding to four combi-
nations of momenta of molecules after collision. The maximal number of these combinations for the plane is 8. In the three
dimensional case, the circumferences shown in Fig. 3 turn into the surfaces of spheres and the maximal number of possible
intersection points increases to 24. This corresponds to the maximal total number of combinations of momenta after colli-
sion. This approach provides the consistency in discretisation processes used for the description of molecular dynamics and
collision processes. It has been tested on numerous problems, some of which are discussed in [29].

If during the collision the net internal energy of molecules increases, this has to be compensated for by the decrease in the
kinetic energies of molecules, and the radius of the corresponding circle in Fig. 3 is decreased. In the opposite case, when the
net internal energy of molecules decreases, this has to be compensated for by the increase in the kinetic energies of mole-
cules, and the radius of the corresponding circle in Fig. 3 is increased. Both cases are shown in Fig. 3. In the case of increased
net kinetic energy of molecules, possible values of the momenta of both molecules after the collision are shown as the grey
circles. These include points p0 and p0�. The changes of radii of the circles after collision have been calculated based on Korob-
ov’s sequences [13,18], enhanced by the randomisation of individual points. As in the case of elastic collisions, the points p0

and p0� are chosen to coincide with the nodes of the discretised momenta space.
3. Applications

The model described in the previous section has been tested using three simple one-dimensional examples. These are
shock wave structure in nitrogen, heat flux between two parallel plates in a mixture of n-dodecane and nitrogen and
one-dimensional evaporation of n-dodecane into nitrogen.

3.1. Shock wave structure

The first test is focused on the prediction of the shock wave structure observed experimentally [1]. In this paper the re-
sults of accurate measurements of the density distribution in argon and nitrogen shock waves are presented. These measure-
ments were performed in a shock tube for Mach numbers ranging from 1.55 to 9 (argon) and from 1.55 to 10 (nitrogen) by
the absorption of an electron beam. Our focus will be on the results referring to nitrogen with Mach number equal to 2 for
the parameters before the shock wave. Using the Rankine–Hugoniot relationships, this leads to the following ratios of num-
ber densities n�, static temperatures T� and velocities v� after and before the shock wave at large distances from it (indi-
cated by subscripts þ and � respectively) [19]:
nþ
n�
¼ 2:2857;

Tþ
T�
¼ 2:0781;

vþ
v�
¼ 0:4375:



Fig. 4. Plots of n ¼ ðnn � n�Þ=ðnþ � n�Þ, where nn is the current number density of nitrogen, versus the distance x normalised by the mean free path
‘ ¼ ð

ffiffiffi
2
p

pr2
N2

n�Þ�1, where rN2 is the characteristic diameter of N2 molecules. x ¼ 0 shows the location of the shock wave. The dotted curve refers to the
results of our calculations when the contribution of the internal degrees of freedom is ignored; the thick solid curve refers to the results of our calculations
when the contribution of the internal degrees of freedom is taken into account; the thin solid curve refers to the results of calculations reported by [32],
taking into account the contribution of the internal degrees of freedom; rhombuses show the experimental results reproduced from [1].
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Rotational relaxation in nitrogen is found to be very fast for all Mach numbers [1]. Consequently the coupling between rota-
tional and translational relaxation is expected to be very strong. Since the vibrational degrees of freedom could be ignored
for the conditions of the experiment, we consider only two internal degrees of freedom referring to the rotational motion
(Nint ¼ 2).

The calculations have been performed for the normalised density n ¼ ðnn � n�Þ=ðnþ � n�Þ, where nn is the current number
density of nitrogen, taking into account and ignoring these two internal degrees of freedom. The results are shown in Fig. 4.
In the same figure, the experimental data, obtained in [1] (see his Fig. 11), and the modelling results reported in [32], are
shown. Note that the approach used in [32] is different from the one described earlier in this paper, although it also takes
into account the contribution of inelastic collisions. As follows from this figure, although the curves referring to the cases
with and without taking into account the internal degrees of freedom show similar trends, the actual values of number den-
sities predicted by both approaches are visibly different. Thus, ignoring the contribution of the internal degrees of freedom,
an approach widely used by the researchers in this area, including those from our group (e.g. [29,27,23,28]), can be too crude
a method for many engineering applications. Also, the results of our calculations, taking into account the contribution of the
internal degrees of freedom, appear to be very close to experimental data and the modelling results reported in [32]. This
gives us confidence in our approach to modelling this phenomenon.

In Fig. 5 we have presented the results of calculations of a hypothetical case, when nitrogen is allowed to have less or
more than two internal degrees of freedom (Nint). The cases of Nint ¼ 0;2;6 and 10 have been considered. As follows from
this figure, the increase in the number of internal degrees of freedom from 0 to 2 and from 2 to 6 visibly affects the solution.
However, further increase in this number from 6 to 10 produces only a relatively minor effect. This potentially opens the way
for modelling systems with large numbers of internal degrees of freedom, by taking into account the contribution of a rel-
atively small number of these degrees of freedom. This idea is supported by the tests considered in the next two subsections.
Fig. 5. Plots of n ¼ ðnn � n�Þ=ðnþ � n�Þ versus the distance x normalised by the mean free path ‘ of N2 molecules showing the results of our calculations
when the contribution of the various numbers of internal degrees of freedom Nint are taken into account.
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3.2. Heat flux between two parallel plates

Let us consider two parallel plates at normalised temperatures Tw1 ¼ 1:5 and Tw2 ¼ 1; the space between these plates is
filled with a mixture of n-dodecane C12H26 and nitrogen N2 at the initial normalised temperature T ¼ 1. The normalised
number densities of both components are assumed initially equal to 1 (nd � nC12H26 ¼ nn � nN2 ¼ 1). The distance between
the plates is L ¼ 5‘, where ‘ is the average free molecular path at nC12H26 ¼ nN2 ¼ 1 and T ¼ 1. The problem setup is schemat-
ically presented in Fig. 6. Both components are calculated, using two Boltzmann equations as described in [29]. The
X 

L

Tw1 Tw2 

 nd, nn, T

0 

Fig. 6. A schematic presentation of the setup used for the analysis of the heat flux between two parallel plates, separated by the distance L along the x-axis
and kept at temperatures Tw1 and Tw2. nd and nn are number densities of n-dodecane and nitrogen respectively; T � TðxÞ is the temperature between the
plates.

Fig. 7. Plots of nd (a) and nn (b) versus the distance x normalised by the mean free path ‘ for three values of Nint for the setup shown in Fig. 6. x ¼ 0 shows the
location of the left-hand side plate.
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calculations have been performed assuming that nitrogen has no internal degrees of freedom while the number of internal
degrees of freedom of n-dodecane has been assumed to be in the range Nint ¼ 0 to Nint ¼ 50. The normalising factors do not
affect the results of calculations of the final steady state of this system.

The results of calculations for the distribution of the number densities of n-dodecane (nd � nC12H26 ) and nitrogen
(nn � nN2 ), when the system has reached the steady state, are shown in Fig. 7. Three values of the number of internal degrees
of freedom of n-dodecane (Nint ¼ 0; 3 and 7) have been considered. As one can see from this figure, the distributions of both
n-dodecane and nitrogen number densities visibly change when Nint increases from 0 to 3. These changes, however, become
much smaller when Nint increases further from 3 to 7.

The results of calculations for the distribution of the normalised temperatures of n-dodecane and nitrogen, when the
system reached the steady state, are shown in Fig. 8. As in the case of Fig. 7, three values of the number of internal degrees
of freedom of n-dodecane (0, 3 and 7) have been considered. As one can see from this figure, the distributions of both n-dodecane
and nitrogen noticeably change when Nint increases from 0 to 3. As in the case of Fig. 7, these changes become much less
significant when Nint increases further from 3 to 7. The conclusions inferred from Figs. 7 and 8 are consistent with those in-
ferred from Fig. 5 for a very different physical problem.

The difference between the values of gas temperature near the walls and the wall temperatures can be clearly seen in
Fig. 8. This is a well known temperature jump in rarefied gases (e.g. [24]).

The plots of the normalised heat flux q between the plates versus Nint are shown in Fig. 9. We have used the normalisation
factor
qC12H26
RC12H26 T0
� �3=2

;

where qC12H26
and RC12H26 are the density and gas constant of n-dodecane respectively, T0 is the initial dimensional

temperature.
The cases of the above mentioned mixture of n-dodecane and nitrogen and pure n-dodecane have been considered. As

follows from this figure, the changes in q at Nint P 15 are much smaller compared with the changes at Nint < 15. At
Nint > 25, the values of q remain practically constant and do not depend on Nint.
Fig. 8. The same as Fig. 7, but for the normalised temperatures of n-dodecane and nitrogen (Td (a) and Tn (b)).



Fig. 9. Plots of the normalised heat flux q versus Nint for pure n-dodecane and the mixture of n-dodecane and nitrogen for the setup shown in Fig. 6.

96 I.N. Shishkova et al. / Journal of Computational Physics 232 (2013) 87–99
3.3. Evaporation of n-dodecane into nitrogen

Let us consider two parallel plates, similar to those studied in the previous section, but at normalised temperatures
Tw1 ¼ Tw2 ¼ 1; initially the space between these plates is filled with nitrogen at the normalised temperature T ¼ 1 and num-
ber density nn � nN2 ¼ 1. The total amount of nitrogen in the system is assumed to be constant. As in the previous problem,
the distance between the plates is taken equal to L ¼ 5‘. n-Dodecane is evaporated from the first plate in such a way that its
normalised number density at the surface of this plate remains constant and equal to 1.5. Once n-dodecane reaches the right
plate it fully condenses so that its number density at the surface of this plate remains equal to 0. This setup is schematically
shown in Fig. 10.

As in the case of the previous problem, the calculations have been performed assuming that nitrogen has no internal de-
grees of freedom while the number of internal degrees of freedom of n-dodecane are assumed to be in the range Nint ¼ 0 to
Nint ¼ 50.

The results of calculations for the distribution of the number densities of n-dodecane and nitrogen, when the system
reached the steady state, are shown in Fig. 11. Four values of the number of internal degrees of freedom of n-dodecane
(Nint ¼ 0; 3; 7 and 10) have been considered. As one can see from this figure, the distributions of both n-dodecane and nitro-
gen number densities visibly change when Nint increases from 0 to 3. These changes, however, become smaller when Nint

increases further from 3 to 7, and can be practically ignored when Nint increases from 7 to 10.
The plots of normalised mass flux j between the plates versus Nint are shown in Fig. 12. We have used the normalisation

factor
Fig. 10.
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where the notations are the same as in the previous subsection.
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 nn, T 
 nd

0 

A schematic presentation of the setup used for the analysis of the evaporation of n-dodecane into nitrogen. n-Dodecane is evaporated from the left-
de plate kept at a temperature equal to Tw1 and is fully condensed at the right-hand side plate kept at a temperature equal to Tw2. L is the distance
n the plates; nd and nn are number densities of n-dodecane and nitrogen respectively; T � TðxÞ is the temperature between the plates.



Fig. 11. Plots of nd (a) and nn (b) versus the distance x normalised by the mean free path ‘ for four values of Nint for the setup shown in Fig. 10. x ¼ 0 shows
the location of the left-hand side plate.

Fig. 12. Plots of the normalised mass flux of n-dodecane j versus Nint for the setup shown in Fig. 10.
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As follows from this figure, the changes in j at Nint P 15 are much smaller compared with the changes at Nint < 15, as in
the case of the previous problem. At Nint > 25, the values of j remain practically constant and do not depend on Nint.

The results presented in this section open the way for applying the method described in this paper to systems with arbi-
trarily large numbers of internal degrees of freedom by considering systems with relatively small numbers of these degrees
of freedom. The number of internal degrees of freedom to be chosen would depend on the required accuracy of the solution.
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4. Conclusions

A new approach to the solution of the Boltzmann equation, taking into account the effect of inelastic collisions, is sug-
gested. This approach is based on the presentation of the collisions as the random (with uniform probability distribution)
movement along a surface of an N-dimensional sphere, the squared radius of which is equal to the total energy of colliding
molecules in the centre of mass reference system. The projection of a point on the surface of this sphere in each of N direc-
tions gives the root square of the kinetic energy in one of three directions in the physical space, or internal energy referring to
one degree of freedom, of one of the colliding molecules. The kinetic energies of both colliding molecules in three directions
are described by the first six dimensions of the system, and the remaining ðN � 6Þ dimensions describe the internal energies.
In contrast to the case of elastic collisions, the radius of the three-dimensional sphere in the momentum or velocity space
describing the kinetic energies of both molecules changes after each collision. The probabilities of changes of all energies
(kinetic and internal) after collision are assumed to be equal. If during the collision the net internal energy of molecules in-
creases (decreases), this has to be compensated for by the decrease (increase) of the kinetic energies of molecules, and the
radius of the corresponding sphere in the three-dimensional kinetic space decreases (increases). Following [29], we assume
that the momenta of molecules after the collisions belong to an a priori chosen set of momenta, which are nodes in the
momenta space. The changes of radii of the spheres in the kinetic space after collisions are calculated based on Korobov’s
sequences, enhanced by the randomisation of individual points.

The above mentioned new approach has been applied to three test problems: shock wave structure in nitrogen, one-
dimensional heat transfer through a mixture of n-dodecane and nitrogen and one-dimensional evaporation of n-dodecane
into nitrogen. In the first problem, the predictions of the model, taking into account the contribution of the rotational degrees
of freedom, are shown to be close to experimental data and the predictions of the earlier developed model, based on a dif-
ferent approach to taking into account the effects of inelastic collisions. This problem has been generalised to a hypothetical
case when the number of internal degrees of freedom of nitrogen (Nint) has been assumed to be in the range 0–10. It has been
shown that the results visibly change when Nint is increased from 0 to 2, but remain practically unchanged for Nint P 6.

The predicted heat flux for the second problem has been shown not to depend on the number of internal degrees of free-
dom of the mixture Nint when this number exceeds about 15. In the third problem, the predicted mass flux of n-dodecane
also remained almost unchanged for Nint P 15. These results open the way for considering systems with arbitrarily large
numbers of internal degrees of freedom by reducing the analysis of these systems to the analysis of systems with relatively
small numbers of internal degrees of freedom.
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