Experimental observations of fuel sprays in gasoline engines

S. Begg

The Sir Harry Ricardo Laboratories Centre for Automotive Engineering

13th April – Workshop- New mathematical tools for modelling the processes in IC engines: a dialogue between mathematicians and engineers

Contents of presentation

- Current objectives in gasoline engine research
- Progression in gasoline fuel injection systems
- Key characteristics of fuel sprays
- Optical diagnostics commonly applied to sprays
- The Phase Doppler anemometer
- Conclusions and modelling challenges for fuel sprays

Current objectives in gasoline engine research

- Significant simultaneous reduction in emissions and consumption
 - Direct injection, downsizing, boosting, VVA technologies...
- Fuel injection system optimisation
 - Metering, variable needle lift, phasing, targeting, atomisation, multi-shot, fuel blends...
- Engine management system
 - Crank-angled resolved, poor cycles identified, multi-strike ignition...

Understanding the fuel injection process is key to the mixture preparation... the 'trial and error' approach is no longer adequate...

- Single point and multi-point port fuel injection (PFI)
 - 2-12 bar fuel pressure / fixed OVI and CVI injection timing
 - High cyclic variations, poor lean operation, poor tolerance to EGR
- 1st generation direct injection (G-DI)
 - 10-120 bar fuel pressure / range of injection timings
 - Optimised flow structures / stratification of charge
 - Sensitivity to fuel injector location and spray characteristics
 - Relatively high ubHC and NOx emissions

- 1st generation direct injection (G-DI)
 - 10-120 bar fuel pressure / range of injection timings
 - Single and multi-hole solenoid

Exact positioning of spray and spark plug required

High stress on spark plug

Wall-guided

Actual development to wall-/airguided systems

- Fuel transport to spark plug due to internal flow
- Specification of spark plug remains standard

- 2nd generation direct injection- high degree of specialism
 - 150 ?? bar fuel injection pressure / variable needle lift / multi-shot
 - Outward pintle or multi-hole, solenoid and piezo

BMW stratified, 16° Spark plug / Injector

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo, 0.3 to 0.9 ms ASOI, 200 bar, ambient pressure gas

- 2nd generation direct injection
 - 200 bar fuel injection pressure/ outward pintle solenoid injector
 - Laser light-sheet (Mie scattering) highlights head vortex-ring-like structures

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo, 0.3 to 1.2 ms ASOI, E85 at 200 bar, ambient pressure gas

Key characteristics of the fuel spray

- Spray geometry (cone, separation, deflection angles)
- Length scales (penetration/impingement)
- Droplet atomisation 'quality'
- Time scales (0.1 to 100 ms range)
- Shot-to-shot repeatability
- Vortex ring-like structures

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo

- Photographic
- Planar Mie techniques
- Planar inelastic scattering techniques
- Phase Doppler Anemometry

¹ Nouri et al., 2007, ² (Fansler et al., (2006))

• Simple static chamber

• Steady-flow rig

Modified Production BMW Valvetronic Engine

• Fired, optical engine

Spray imaging- chamber

PFI multi-stream

Off-axis pressure-swirl

Flat fan

Fan images courtesy of collaborative project with Uni. Of Cardiff and Ricardo

Combining Spray Imaging with PDA

8 mm

- axial and radial waves
- droplet stripping
- asymmetry
- 'hesitation' due to necking of the liquid stream

Spray imaging- motored engine

Top-entry G-DI – effect of in-cylinder pressureEarly InjectionLate Injection60° - 121°301°- 318°

Onset

Phase Doppler anemometer (PDA)

Phase Shift (deg.),Φ

• Polar distribution of light intensity

Brewster's angle used to collect first order refraction p=1

 $d_p \cong 1.0\lambda$

 $a_{p} = -\Phi\left(\frac{\lambda}{2\pi}\right)\left(\frac{\sqrt{2(1+\cos\theta\cos\varphi\cos\phi)(1+n^{2}-n\sqrt{2(1+\cos\theta\cos\varphi\cos\phi)})}}{n\sin\theta\sin\varphi}\right)$

 $d_p \cong 10\lambda$

Phase Doppler anemometer (PDA)

• Typical features of time series at two locations in a high-pressure spray

PDA– Spray chamber

Initial Phase

Quasi-steady Phase

Trailing Phase

Combining imaging with PDA– Spray chamber

Distance (mm) **0**

20

40

Injector 'F'

60 Fully-developed Spray Region

80 Droplet Velocity Distribution

Injector 'G'

Vortex ring-like structures

- Development of a generalised vortex ring model

Chronological sequence of high-speed photographs, (left to right) recorded using a laser light sheet, in a G-DI spray in an optical engine with full glass cylinder liner

The distribution of the vorticity magnitude for *t*=3.75 ms

Phase Doppler anemometer (PDA)

• Vortex-ring like features in a high-pressure spray

Phase Doppler anemometer (PDA)

- Reconstruction of the spatial distribution of the droplet velocity and size
- Data ensemble-averaged within arbitrary time bins
- Track features (e.g. translation of region of maximal vorticity)

Vortex ring-like structures

Chronological sequence of high-speed photographs, recorded using a laser light sheet, (left to right) in a static spray chamber, 150 bar fuel pressure, 6 barg gas pressure, 1 to 10 ms ASOI, gasoline fuel.

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo

Phase Doppler anemometer (PDA) – motored engine

Phase Doppler anemometer (PDA) –motored engine

Comparison of static chamber results with reciprocating engine

Phase Doppler anemometer (PDA)

 Comparison of higher order number and moment mean diameters for reciprocating engine (e.g. d₃₀)

> Ensemble-Averaged Volume Weighted Velocity and Volume Mean Diameter against Crank Angle at 5 mm from Mid-Cylinder Axis for SOI 120 CA and 1000 rpm

Homogeneous operation

Phase Doppler anemometer (PDA)

 Comparison of higher order number and moment mean diameters for reciprocating engine (e.g. d₃₀)

> Ensemble-Averaged Volume Weighted Velocity and Volume Mean Diameter against Crank Angle at 5 mm from Mid-Cylinder Axis for SOI 290 CA and 1000 rpm

Stratified operation

Conclusions and modelling challenges for fuel sprays

- Future experiments must address a single injection event
 - to capture the characteristics at crank angle resolution
 - within a single cycle and from one consecutive cycle to the next
 - correlation with poor cycles of combustion
- Modelling must incorporate the finer details
 - evolution of vortex ring models
 - fuel injection and gas flow coupling
 - multi-component fuels and fuel blends
 - integration of chemical kinetic models with physical models

Acknowledgements

- EPSRC and equipment loan pool
- University of Cardiff (Prof. P. Bowen, Dr M. Alonso and Dr P. Kay)
- Ricardo UK Ltd
- DTI/TSB 2/4 SIGHT and 2/4 CAR programmes
- Staff and students of the CAE

Experimental observations of fuel sprays in gasoline engines

S. Begg

Centre for Automotive Engineering www.brighton.ac.uk/cae

