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Current objectives in gasoline engine research

• Significant simultaneous reduction in emissions and consumption

• Direct injection, downsizing, boosting, VVA technologies...

• Fuel injection system optimisation

• Metering, variable  needle lift, phasing, targeting, atomisation, 

multi-shot, fuel blends...

• Engine management system

• Crank-angled resolved, poor cycles identified, multi-strike ignition...

Understanding the fuel injection process is key to the mixture 

preparation... the ‘trial and error’ approach is no longer adequate...



Progression in fuel injection systems

• Single point and multi-point port fuel injection (PFI) 

• 2-12 bar fuel pressure / fixed OVI and CVI injection timing

• High cyclic variations, poor lean operation, poor tolerance to EGR

• 1st generation direct injection (G-DI)

• 10-120 bar fuel pressure / range of injection timings

• Optimised flow structures / stratification of charge

• Sensitivity to fuel injector location and spray characteristics

• Relatively high ubHC and NOx emissions



Progression in fuel injection systems

• 1st generation direct injection (G-DI)

• 10-120 bar fuel pressure / range of injection timings

• Single and multi-hole solenoid

(Preussner et al., (1998))



Progression in fuel injection systems

• 2nd generation direct injection- high degree of specialism

• 150 - ?? bar fuel injection pressure / variable needle lift / multi-shot

• Outward pintle or multi-hole, solenoid and piezo

BMW stratified, 16° Spark plug / Injector

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo, 0.3 to 0.9 ms ASOI, 200 bar, ambient pressure gas



Progression in fuel injection systems

• 2nd generation direct injection

• 200 bar fuel injection pressure/ outward pintle solenoid injector

• Laser light-sheet (Mie scattering) highlights head vortex-ring-like structures

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo, 0.3 to 1.2 ms ASOI, E85 at 200 bar, ambient pressure gas



Key characteristics of the fuel spray

• Spray geometry (cone, separation, deflection angles)

• Length scales (penetration/impingement)

• Droplet atomisation ‘quality’

• Time scales (0.1 to 100 ms range)

• Shot-to-shot repeatability

• Vortex ring-like structures
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Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo



Optical diagnostics commonly applied to sprays

• Photographic 

• Planar Mie techniques

• Planar inelastic scattering techniques

• Phase Doppler Anemometry
1 2

1
Nouri et al., 2007, 

2
(Fansler et al., (2006))



Optical diagnostics commonly applied to sprays 

• Simple static chamber
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Optical diagnostics commonly applied to sprays 

• Steady-flow rig

Modified Production 

BMW Valvetronic Engine



Optical diagnostics commonly applied to sprays 

• Fired, optical engine



Spray imaging- chamber

PFI multi-stream Off-axis pressure-swirl

Flat fan
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8 mm

• axial and radial waves

• droplet stripping

• asymmetry

• ‘hesitation’ due to 

necking of the liquid 

stream

Combining Spray Imaging with PDA



Top-entry G-DI – effect of in-cylinder pressure
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Spray imaging- motored engine



Phase Doppler anemometer (PDA)

• Conventional PDA

Light receiving
optics
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Phase Doppler anemometer (PDA)

• Polar distribution of light intensity Brewster’s angle used to 

collect first order refraction p=1  
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Phase Doppler anemometer (PDA)

• Typical features of time series at two locations in a high-pressure spray

r = 0, x = 15 mm r = 10, x = 15 mm



PDA– Spray chamber
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Vortex ring-like structures

- Development of a generalised vortex ring model

   

   
 

Chronological sequence of high-speed photographs, (left 

to right) recorded using a laser light sheet, in a G-DI 

spray in an optical engine with full glass cylinder liner

The distribution 

of the vorticity 

magnitude for 

t=3.75 ms 



Phase Doppler anemometer (PDA)

• Vortex-ring like features in a high-pressure spray
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Phase Doppler anemometer (PDA)

t = 4.50 ms

• Reconstruction of the spatial distribution of the droplet velocity and size

• Data ensemble-averaged within arbitrary time bins

• Track features (e.g. translation of region of maximal vorticity) 



Vortex ring-like structures

Chronological sequence of high-speed photographs, recorded using a 

laser light sheet, (left to right) in a static spray chamber, 150 bar fuel 

pressure, 6 barg gas pressure, 1 to 10 ms ASOI, gasoline fuel. 

Images courtesy of collaborative project with Uni. Of Cardiff and Ricardo
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Phase Doppler anemometer (PDA) – motored engine



Phase Doppler anemometer (PDA) –motored engine

• Comparison of static chamber results with reciprocating engine

Stratified operationHomogeneous operation



Phase Doppler anemometer (PDA)

• Comparison of higher order number and moment mean diameters for 

reciprocating engine (e.g. d30)

Homogeneous operation



Phase Doppler anemometer (PDA)

• Comparison of higher order number and moment mean diameters for 

reciprocating engine (e.g. d30)

Stratified operation



Conclusions and modelling challenges for fuel

sprays

• Future experiments must address a single injection event

• to capture the characteristics at crank angle resolution

• within a single cycle and from one consecutive cycle to the next

• correlation with poor cycles of combustion

• Modelling must incorporate the finer details

• evolution of vortex ring models

• fuel injection and gas flow coupling

• multi-component fuels and fuel blends

• integration of chemical kinetic models with physical models
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