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Abstract

Two new solutions to the heat conduction equation, describing transient heating of

an evaporating droplet, are suggested. Both solutions take into account the effect

of the reduction of the droplet radius due to evaporation, assuming that this radius

is a linear function of time. It has been pointed out that the new approach predicts

lower droplet surface temperatures and slower evaporation rates compared with the

traditional approach. New solutions to the heat conduction equation, describing

transient heating of an evaporating droplet, are suggested, assuming that the time

evolution of droplet radius Rd(t) is known. The results of calculations are compared

with the results obtained using the previously suggested approach, when the droplet

radius was assumed to be a linear function of time during individual time steps, for

typical Diesel engine-like conditions. Both solutions predict the same results which

indicates that both models are likely to be correct.

Two new solutions to the equation, describing the diffusion of species during

multi-component droplet evaporation, are suggested. The first solution is the explicit

analytical solution to this equation while the second one reduces the solution of the

differential species diffusion equation to the solution of the Volterra integral equation

of the second kind. Both solutions take into account the effect of the reduction of

the droplet radius due to evaporation, assuming that this radius is a linear function

of time. The analytical solution has been incorporated into a zero dimensional

CFD code and applied to the analysis of bi-component (50% ethanol – 50% acetone

mixture) droplet evaporation at atmospheric pressure.

The transient heat conduction equation, describing heating of a body immersed

into gas with inhomogeneous temperature distribution, is solved analytically, assu-

ming that, at a certain distance from the body, gas temperature remains constant.

The solution is applied to modelling of body heating in conditions close to those

observed in Diesel engines. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature.
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Chapter 1

Introduction

1.1 Motivation

The problem of the modelling of droplet heating and evaporation has attracted

considerable attention in the research community and a number of advanced models

have been suggested and developed [1]. Most of these models have been based on

the hydrodynamic approximation, but kinetic models and even models based on

molecular dynamic simulation have also been developed [2–8]. At the same time,

practically none of these advanced models has been widely used in the engineering

community where the problem of droplet heating and evaporation constitutes a rela-

tively small part of the multi-dimensional modelling of complex processes involving

the effects of 3D geometry, chemical reactions, turbulence and so on. In most cases,

this modelling has been performed based on commercial or research computational

fluid dynamics (CFD) codes. A typical example of this type of modelling is the

simulation of the processes in Diesel engines described in [9, 10]. In this case, the

models of droplet heating and evaporation are typically based on a number of rather

restrictive assumptions, including the assumption that the thermal conductivity of

droplets is infinitely large and, in the case of multi-component droplets, the diffusi-

vity of species within them is infinitely large or small [11–13]. Kinetic effects have

been ignored. In most recent developments, the effects of finite thermal conducti-

vity and recirculation in droplets was taken into account in the modelling of droplet

heating and evaporation [14–18]. In contrast to the previously developed models,

the approach suggested in these papers is based on the analytical solution to the
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heat conduction equation inside droplets. It was shown that this approach is more

efficient, compared with the one based on the numerical solution to this equation,

both from the point of view of accuracy and of CPU efficiency [16].

In this thesis, a number of new models of droplet heating and evaporation have

been developed, where these effects have been taken into account alongside new ones

such as those of the moving boundary of droplets, due to evaporation, and the effect

of the thermal boundary layer around droplets. As in the case of the previously

developed models (for example [14–18]) the new models are based either on the

analytical solutions of the underlying heat transfer or species diffusion equations

or on the reduction of these equations to the integral equations. The format of

most of these models is such that they can be incorporated into CFD codes and

used for modelling real-life engineering processes. Here lies the main motivation for

this work: the development of new mathematical tools, combining high accuracy

and CPU efficiency, for engineering applications. These applications are primarily

focused on modelling the processes in Diesel engines, although a much wider range

of applications is anticipated in the future.

The results of the thesis have been presented in the following papers published in

international refereed journals [19–24] and refereed conference proceedings [25–33].

1.2 Background research

The problem of the modelling of droplet or solid body heating/cooling and evapo-

ration has been discussed in numerous papers (for example [15, 34]) and the results

have been summarised in a number of reviews and monographs, including [1, 35–37]

(see [19, 20, 38] for the most recent developments in this area).

The importance of accurately modelling these processes in engineering appli-

cations is widely accepted (for example [36]). In Diesel engine combustion, for

example, this has a significant effect on the prediction of the ignition delay period

and combustion processes [9, 10]. These in turn affect emission formation and fuel

consumption.

Following [11] the models of droplet heating can be subdivided into the following

groups in order of ascending complexity:

2



1) models based on the assumption that the droplet surface temperature is uni-

form and does not change with time;

2) models based on the assumption that there is no temperature gradient inside

droplets (infinite thermal conductivity of liquid);

3) models taking into account finite liquid thermal conductivity, but not the

re-circulation inside droplets (conduction limit);

4) models taking into account both finite liquid thermal conductivity and the

re-circulation inside droplets via the introduction of a correction factor to the liquid

thermal conductivity (effective conductivity models);

5) models describing the re-circulation inside droplets in terms of vortex dyna-

mics (vortex models);

6) models based on the full solution of the Navier-Stokes equation.

The first group allows the reduction of the dimensions of the system via the

complete elimination of the equation for droplet temperature. This appears to be

particularly attractive for the analytical studies of droplet evaporation and thermal

ignition of fuel vapour/air mixture (see [39–43]). This group of models, however,

appears to be too simplistic for application in most CFD codes. Groups (5) and

(6) have not been used and are not expected to be used in these codes in the fore-

seeable future due to their complexity. These models are widely used for validation

of more basic models of droplet heating, or for in-depth understanding of the under-

lying physical processes (see [11, 35, 44–46]). Traditionally, in most computational

fluid dynamics (CFD) codes, droplet heating has been modelled assuming that the

thermal conductivity of droplets is infinitely large, and there is no temperature gra-

dient inside droplets (second group of models)(for example [42, 47]). This assump-

tion contradicts direct measurements of the temperature distribution inside droplets

[14, 38, 48–50]. Bertoli and Migliaccio [51] were perhaps the first to draw attention

to the fact that taking into account the temperature gradient inside droplets can

considerably increase the accuracy of CFD modelling of combustion processes in

Diesel engines. The analysis by these authors was based on the numerical solution

of the heat conduction equation inside droplets. However, this approach led to a

considerable increase in the required computational time – a serious drawback. Also,

the effects of internal liquid recirculation inside droplets were ignored in [51]. An

3



alternative approach was suggested and developed in [1, 15–17, 52]. In these papers

both finite liquid thermal conductivity and recirculation inside droplets (via the

effective thermal conductivity (ETC) model [44]) were taken into account by incor-

porating the analytical solution to the heat conduction equation inside the droplet

into a numerical scheme. The liquid thermal conductivity inside droplets was repla-

ced by the effective thermal conductivity to take into account liquid recirculation

[44]. The temperature distribution inside droplets at the end of the integration time

step, predicted by the analytical solution, was used as the initial condition for the

next time step. This approach was shown to be considerably more efficient (both

from the point of view of accuracy and of computer efficiency) than the one used in

[51] (see [16]).

The models for droplet heating used in [15–17, 51] were implicitly based on the

assumptions that the evaporation rate of droplets is small and the value of droplet

radius does not change during any time step (although this radius changes from

one step to another). This means that the effect of a moving boundary on droplet

heating was ignored. This is a well known approach used in all available CFD codes

(for example [42, 47]).

The species diffusion equation in liquids and gases, describing the dynamics of

multi-component systems, has been widely discussed in the literature [53]. One of

the most important applications of this equation is that to the analysis of heating

and evaporation of multi-component droplets [1, 54]. In realistic moving droplets,

species diffusion takes place alongside species convection when Hill-type vortices are

formed inside droplets [55]. In most practically relevant cases, however, the details

of species distribution inside droplets are not important and the effects of species

diffusion and convection can be described in terms of the spherically symmetric

effective diffusivity model [1] in which the actual diffusivity of liquid species is re-

placed by the effective diffusivity. The models of multi-component droplet heating

and evaporation are generally subdivided into two main groups: those based on

the analysis of individual components [55–61], applicable in the case when a small

number of components needs to be taken into account, and those based on the pro-

babilistic analysis of a large number of components [62–65]. In the second family

of models a number of additional simplifying assumptions were used, including the
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assumption that species inside droplets mix infinitely quickly. Models containing

features of both these groups of models have been suggested in [66]. Most of the

models belonging to the first group are based on the numerical solution to the spe-

cies diffusion equation inside droplets. At the same time the analysis of [38, 50] was

based on the analytical solution to this equation. The model in [38] was applied to

the analysis of heating and evaporation of bi-component ethanol/acetone droplets.

The authors of [38] based their analysis on the analytical solution to the species

diffusion equation, which was incorporated into the numerical code. This approach

is expected to be more CPU efficient and accurate compared with the one based on

the conventional approach [50]. The model described in [38] has been generalised in

[50] to take into account coupling between droplets and gas. None of these models

took into account the effects of the moving boundary due to evaporation on the

species diffusion equation.

Most of the models of droplet heating and evaporation suggested so far are based

on the assumption that gas in computational cells is always homogeneous and the

gas temperature in the immediate vicinity of the droplet surface is the same as

in the rest of the cell [1, 37]. The droplet heating in this case is described based

on Newton’s law with gas ambient temperature assumed equal to gas temperature

at any point of the cell. The validity of this approach has been investigated in

[52], where the effects of a sudden immersion of a body into a homogeneous gas

have been studied. In the model, described in [52], gas temperature was fixed at

a certain distance from the surface of the body and assumed equal to the ambient

temperature, while gas temperature near the body was allowed to change with time

alongside the temperature inside the body. As follows from the analysis of [52],

noticeable deviations from the predictions of the conventional Newton’s law, used

in CFD codes, were observed. At the initial stage, the body was heated up (or

cooled down) much more quickly than predicted by Newton’s law, while at the

final stages the body heating/cooling followed Newton’s law, but with the values

of the heat transfer coefficient smaller or larger than predicted by the conventional

model, depending on the thickness of the region where gas temperature was allowed

to change. In the limit of an infinitely large gaseous area around the body the

predictions of [52] turned out to be identical with the predictions based on the
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model described in [67]. The latter model is based on an approach which differs

from the one used in [52]. One of the main limitations of the model described

in [52] is that it was based on the assumption that initially gas temperature was

homogeneous in the whole domain. This imposes a serious limitation for practical

applications of this model in a realistic environment when the ambient temperature

can vary with time.

Near-critical and supercritical droplet heating and evaporation was covered in

relatively recent reviews [68, 69], and [64]. Analysis of the interaction between

droplets, collisions, coalescence, atomization, oscillations (including instabilities of

evaporating droplets) and size distribution were considered in [70–85]). The pro-

blem of heating and evaporation of droplets on heated surfaces was considered in

[82, 86]. The problem of droplet heating and evaporation is related to spray com-

bustion (see [9, 10, 87–89]). Two groups of models for radiative heating of droplets

have been considered: the one based on the assumption that droplets are opaque

grey spheres [42, 47, 90], and the one based on the assumption that droplets are

semi-transparent for thermal radiation [91–97]. The first approach is the one used

in all CFD codes which are known to us, while the second one is much more ap-

propriate from the point of view of underlying physics. The Soret effect describes

the flow of matter caused by a temperature gradient (thermal diffusion), while the

Dufour effect describes the flow of heat caused by concentration gradients. The two

effects occur simultaneously. Both effects are believed to be small in most cases

although sometimes their contribution may be significant (see [98–102]). Kinetic

and molecular dynamics effects on droplet heating and evaporation were considered

in [2–5, 7, 103, 104]. All effects mentioned in this paragraph will be ignored in our

analysis.

1.3 Structure of the thesis

In Chapter 2 a model for mono-component droplet heating and evaporation, based

on the assumption that droplet radius is a linear function of time during time steps,

is presented and discussed. A more general model, based on the assumption that

droplet radius is an a priori known function of time, is discussed in Chapter 3.
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In Chapter 4 the effects of the moving boundary on the solution to the species

diffusion equation in multi-component droplets are discussed. A model for body

heating/cooling, when this body is immersed into an ambient gas with temperature

varying with distance from the surface of the body, is presented in Chapter 5. The

main results of the thesis are summarised in Chapter 6.
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Chapter 2

Transient heating of an

evaporating droplet when droplet

is a linear function of time

2.1 Introduction of Chapter 2

Taking into account the effect of receding droplet radius on droplet heating and

evaporation leads to the well known Stefan problem, which has been widely discussed

in the literature (e.g. [105]-[54]), but has been rarely applied to engineering sprays,

due to the complex structure. Hence, a substantial gap has developed between

mathematical and engineering research in this field. The main objective of this work

is to fill this particular gap. This will include the development of an appropriate

mathematical model for specific spray applications, and the actual application of

this model to simulate droplet heating and evaporation processes in Diesel engine-

like conditions. There has been no previous research in this direction to the best of

our knowledge.

The essence of the difference between the new approach to the modelling of dro-

plet heating and evaporation, suggested in this chapter, and the traditional approach

is schematically illustrated in Fig. 2.1. As follows from this figure, the approxima-

tion of the reduction of the droplet radius during the time step by the linear function

is noticeably much more accurate than the approximation based on the assumption

that the droplet radius is constant during the time step (the conventional approach

8



Figure 2.1: A schematic presentation of the plot Rd versus t for an evaporating

droplet (solid); approximation of this plot using the conventional approach assuming

that Rd = const during the time step (dotted); approximation of this plot using the

new approach assuming that Rd is the linear function of t during each time step

(dashed).

used in CFD codes). This difference, however, can be mitigated by choosing suffi-

ciently small time steps (more time steps would be required in the case when the

reduction of droplet radius during the time step is ignored than in the case when it

is taken into account). A more important implication of the new approach, compa-

red with the traditional one, however, is that the effect of the reduction of droplet

radius on droplet heating is explicitly taken into account in the new approach at

every time step. This leads to the prediction of temperatures different compared

with the ones predicted by the traditional approach, regardless of how many time

steps are used in the analysis. These differences in droplet temperatures lead to

different time dependencies of droplet radii. These effects will be illustrated in this

chapter using examples of fuel droplet heating and evaporation in Diesel engine-like

conditions.

The basic equations and approximations of the new model are described in Sec-

tion 2. The analysis and solutions of these basic equations are given in Section 3.

In Section 4, one of these solutions is analysed for the values of parameters typical

for Diesel engines. The main results of the chapter are summarised in Section 5.
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2.2 Basic equations and approximations

Let us assume that an evaporating droplet is immersed into a homogeneous hot

gas at constant temperature Tg. The droplet is heated by convection, with the

convection heat transfer coefficient h(t) depending on time t and droplet radius

Rd(t), and cools down due to evaporation. Rd(t) is a continuously differentiable

function of time in the range 0 ≤ t ≤ te, where te is the evaporation time. Both

Rd(t) and h(t) are assumed to be known. Effects of thermal radiation are taken into

account. The changes in the droplet temperature (T ≡ T (t, R)) are described by

the heat conduction equation in the form [105, 106]:

∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
+ P (R) (2.1)

for 0 ≤ t < te, 0 ≤ R < Rd(t), where κ is liquid thermal diffusivity (κ =

kl/(clρl) =const), kl is the liquid thermal conductivity, cl is the liquid specific heat

capacity, ρl is the liquid density, R is the distance from the centre of the droplet.

The term P (R) takes into account the effects of thermal radiation, assuming

that droplets are semi-transparent (radiation can penetrate inside droplets). Various

approximations for P (R) were suggested in [91]–[107].

Remembering the physical background of the problem, we look for the solution of

this equation in the form of a twice continuously differentiable function T ≡ T (t, R)

for 0 ≤ t < te, 0 ≤ R < Rd(t). This solution should satisfy the boundary condition:(
kl
∂T

∂R
+ hT

)∣∣∣∣∣
R=Rd(t)

= hTg + ρlLṘd(t), (2.2)

T is finite and continuous at R → +0, Ts = T (Rd(t), t) is the droplet’s surface

temperature, L is the specific heat of evaporation. We took into account that

Ṙd(t) ≡ dRd/dt ≤ 0. Effects of swelling are ignored. Equation (2.2) is just the

energy balance condition at R = Rd(t). The initial condition is taken in the form:

T (t = 0) = T0(R), (2.3)

where 0 ≤ R ≤ Rd0 = Rd(t = 0).

The value of Rd(t) is controlled by fuel vapour diffusion from the droplet surface,

and can be found from the equation [1]:

Ṙd = −kg ln (1 +BM)

ρlcpgRd

, (2.4)
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where

BM =
Yvs − Yv∞

1− Yvs
, (2.5)

is the Spalding mass transfer number, Yfs is the mass fraction of fuel vapour

near the droplet surface:

Yfs =

[
1 +

(
p

pfs
− 1

)
Ma

Mf

]−1

, (2.6)

Yv∞ is the mass fraction of fuel vapour in ambient gas (in our analysis we assume

Yv∞ = 0 ),

p and pfs are ambient pressure and the pressure of saturated fuel vapour near

the surface of the droplet respectively, Ma and Mf are molar masses of air and fuel;

pfs is calculated from the Clausius-Clapeyron equation presented in the form:

pfs = exp

[
a− b

Ts − 43

]
, (2.7)

a and b are constants to be specified for specific fuels, Ts is the surface temperature

of fuel droplets in K; pfs predicted by Equation (2.7) is in kPa.

In [15] it was assumed that Rd =const, while the contribution of Ṙd was taken

into account by replacing gas temperature with the so called effective temperature.

It was assumed that this approach is applicable when used during relatively short

times (time steps in computational fluid dynamics (CFD) codes), but it has never

been rigorously justified. The focus of this chapter is on the effects of changing

droplet radius during the time step on the heating of droplets.

The current state of the development of mathematical tools for the solution of

this type of problem is described by Kartashov [105]. In the following analysis, some

of the results described in [105] will be adapted to the investigation of our problem.

A number of simplifying assumptions will be made. Firstly, the contribution of

thermal radiation will be ignored (P (R) = 0). Secondly, we assume that Rd(t) is

the linear function of t:

Rd(t) = Rd0(1 + αt). (2.8)

Remembering (2.4), the explicit expression for α can be presented as:

α = −kg ln (1 +BM)

ρlcpgR2
d0

. (2.9)

The effect of thermal radiation on droplet heating and evaporation in Diesel

engine-like conditions has been considered in a number of papers including [96,
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108]. As follows from the analysis of [96], in the case when external temperature,

responsible for radiative heating, is about or less than 1000 K the effect of radiation

on droplet evaporation is less than about 1% (see Fig. 2.3 of [96]). This justifies our

assumption that P (R) = 0.

The second assumption is justified if the results are applied to a relatively short

period of time, when Rd(t) can be expanded into a Taylor series in time and only the

first two terms are retained (in our previous analyses and in all CFD codes known to

us, only the zeroth terms were used). In this case, t = 0 will refer to the beginning

of the time step t0, te will refer to t0 + ∆t, where ∆t is the time step.

Note that Brenn [54], considering a different problem of calculating the concen-

tration field in evaporating droplets, assumed that R2
d, rather than Rd, is a linear

function of time during the whole evaporation process:

R2
d(t) = R2

d0 − α′t. (2.10)

This could be justified by Eq. (2.4) assuming that BM = const. In our case this

assumption can be made during the time step but not during the whole evaporation

process. For sufficiently small time steps, both approaches lead to identical results

since:

Rd = Rd0

√
1− α′t/R2

d0 ≈ Rd0(1 + αt),

where α = −α′/(2R2
d0).

The problem considered in [54] is more general compared with the one considered

in this chapter, as the 3D effects on species concentrations were taken into account

in that paper. If only the radial dependence of this concentration is taken into

account, Eq. (1) of [54] would have exactly the same structure as Eq. (2.1) in this

chapter. However, the solution of his equation cannot be used for our equation due

to different boundary conditions used in our papers.

Among other assumptions used in our analysis we mention that the effects of the

interaction between droplets were ignored. This can be justified when the distance

parameter (ratio of the distance between droplets to their diameters) is large (see

[49] for details).
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2.3 Analysis of the equations

2.3.1 Preliminary analysis

Let us rewrite boundary condition (2.2) in the form:(
∂T

∂R
+
h

kl
T

)∣∣∣∣∣
R=Rd(t)

=
h

kl
Tg +

ρl
kl
LṘd(t) ≡M(t), (2.11)

and introduce the new variable u = TR. Using this new variable, we can rewrite

Equation (2.1) as:
∂u

∂t
= κ

∂2u

∂R2
, (2.12)

for t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]), R ∈ [0, Rd(t)] with the boundary conditions:(
∂u

∂R
+H(t)u

)∣∣∣∣∣
R=Rd(t)

= µ(t), (2.13)

u|R=0 = 0, (2.14)

where:

H(t) =
h(t)

kl
− 1

Rd(t)
, µ(t) = M(t)Rd(t)

for t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]).

The initial condition is:

u(t, R)|t=0 = RT0(R) (2.15)

for R ∈ [0, Rd0].

Following Kartashov [105], we introduce a new variable

ξ = R/Rd(t),

and a new function

F (t, ξ) = u(t, R).

This new variable allows us to reduce the problem with a moving boundary to the

one with a stationary boundary, since:

0 ≤ ξ ≤ 1 when 0 ≤ R ≤ Rd(t).

Since

u
′

t = F
′

t + F
′

ξξ
′

t = F
′

t − ξ
R
′
d(t)

Rd(t)
F
′

ξ ; u
′

R = F
′

ξξ
′

R =
F
′
ξ

Rd(t)
; u

′′

RR =
F
′′
ξξ

R2
d(t)

,
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we can rewrite Equation (2.12) as

R2
d(t)F

′

t = κF
′′

ξξ + ξR
′

d(t)Rd(t)F
′

ξ . (2.16)

Equation (2.16) is identical to the one studied in [109], where the distribution of

temperature in the melting region was considered (plane problem).

Equation (2.16) is to be solved at t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]) and 0 ≤ ξ ≤ 1.

Initial and boundary conditions for this equation can be presented as:

F |t=0 = Rd0ξT0(ξRd0), 0 ≤ ξ ≤ 1,

F |ξ=0 = 0,
(
F
′

ξ + H̃(t)F
)∣∣∣
ξ=1

= µ̃(t), 0 ≤ t ≤ te (or t ∈ [t0, t0 + ∆t]),

where H̃(t) = H(t)Rd(t), µ̃(t) = M(t)R2
d(t).

Following Kartashov [105], we introduce the new unknown function W (t, ξ) via

the relation:

F (t, ξ) =
1√
Rd(t)

exp

[
−R

′
d(t)Rd(t)

4κ
ξ2

]
W (t, ξ). (2.17)

From Equation (2.17) we obtain the following expressions for the derivatives:

F
′

t =

{
−
[

1

2
R
−3/2
d (t)R

′

d(t) +R
−1/2
d (t)

(
(R
′
d(t))

2 +Rd(t)R
′′
d(t)

4κ
ξ2

)]
W (t, ξ)

+R
−1/2
d (t)W

′

t (t, ξ)
}

exp

[
−R

′
d(t)Rd(t)

4κ
ξ2

]
,

F
′

ξ =

−2ξR
′
d(t)Rd(t)

4
√
Rd(t)κ

W (t, ξ) +
1√
Rd(t)

W
′

ξ(t, ξ)

 exp

[
−R

′
d(t)Rd(t)

4κ
ξ2

]
,

F
′′

ξξ =

 2√
Rd(t)

−Rd(t)R
′
d(t)

4κ
+ 2ξ2

(
Rd(t)R

′
d(t)

4κ

)2
W (t, ξ)

− 4ξ√
Rd(t)

Rd(t)R
′
d(t)

4κ
W
′

ξ(t, ξ) +
1√
Rd(t)

W
′′

ξξ(t, ξ)

 exp

[
−R

′
d(t)Rd(t)

4κ
ξ2

]
.

Remembering Equation (2.8), we can see that d2Rd/dt
2 = 0. Keeping in mind this

condition, the substitution of the above-mentioned expressions for the derivatives

into Equation (2.16) gives:

R2
d(t)W

′

t (t, ξ) = κW
′′

ξξ(t, ξ), (2.18)

where t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]), 0 ≤ ξ ≤ 1.
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In the case of non-zero d2Rd/dt
2 and P (R), Eq. (2.18) would need to be replaced

by the following equation (cf. Equation (8.149) in [105]):

R2
d(t)W

′

t (t, ξ) = κW
′′

ξξ(t, ξ) +

[
ξ2

4κ

]
R3
d

d2Rd

dt2
W (t, ξ) +

R2
dR

qK(ξ, t)
P (R), (2.19)

where

qK(ξ, t) =
1√
Rd(t)

exp

[
−R

′
d(t)Rd(t)

4κ
ξ2

]
.

Equation (2.19) reduces to Equation (2.18) in the limit when d2Rd/dt
2 = 0 and

P (R) = 0.

Equation (2.18) is to be solved subject to initial and boundary conditions:

W (t, ξ)|t=0 = W0(ξ) ≡ R
3/2
d0 ξT0(ξRd0) exp

[
R
′
d(0)Rd0

4κ
ξ2

]
, (2.20)

0 ≤ ξ ≤ 1,

W (t, ξ)|ξ=0 = 0, (2.21)

t ∈ [0, te], (or t ∈ [t0, t0 + ∆t])[
W
′

ξ(t, ξ) +H0(t)W (t, ξ)
]∣∣∣
ξ=1

= µ0(t) ≡ µ̃(t)
√
Rd(t) exp

[
R
′
d(t)Rd(t)

4κ

]
, (2.22)

t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]),

where:

H0(t) = H̃(t)− R
′
d(t)Rd(t)

2κ
=
h(t)

kl
Rd(t)− 1− R

′
d(t)Rd(t)

2κ
.

2.3.2 Analytical solution

Let us now simplify the problem further by assuming that H0(t) ≡ h0 =const> −1.

Remembering that h = kg/Rd(t) for stationary droplets, the term

h(t)

kl
Rd(t)

can be simplified to kg/kl, and this ratio does not depend on t. Except at the final

stage of droplet evaporation, in Diesel engine-like conditions it is typically much

larger than
R
′
d(t)Rd(t)

2κ
.
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Hence the time dependence of H0(t) during the time step in this case can be ignored.

This assumption will be relaxed later.

Our next goal is to find such change of variables that the inhomogeneous boun-

dary condition (2.22) is replaced by the homogeneous one. This is achieved by the

introduction of the new function V (t, ξ) via the relation:

W (t, ξ) = V (t, ξ) +
µ0(t)

1 + h0

ξ, (2.23)

Equation (2.23) allows us to rearrange Equation (2.18) to:

R2
d(t)V

′

t (t, ξ) = κV
′′

ξξ(t, ξ)−
µ
′
0(t)

1 + h0

R2
d(t)ξ, (2.24)

t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]), 0 ≤ ξ ≤ 1.

The initial and boundary conditions for Equation (2.24) can be presented as:

V (t, ξ)|t=0 = W0(ξ)− µ0(0)

1 + h0

ξ, 0 ≤ ξ ≤ 1,

V (t, ξ)|ξ=0 = 0,
[
V
′

ξ (t, ξ) + h0V (t, ξ)
]∣∣∣
ξ=1

= 0,

t ∈ [0, te] (or t ∈ [t0, t0 + ∆t]).

In the absence of thermal radiation, Equation (2.24) is identical to Equation (12)

in [15]. Following the analysis presented in that paper we look for the solution of

Equation (2.24) in the form:

V (t, ξ) =
∞∑
n=1

Θn(t)vn(ξ), (2.25)

where functions vn(ξ) form the full set of non-trivial solutions of the equation:

d2v

dξ2
+ λ2v = 0, 0 ≤ ξ ≤ 1, (2.26)

subject to boundary conditions:

v|ξ=0 =

(
dv

dξ
+ h0v

)∣∣∣∣∣
ξ=1

= 0.

The general solution to Equation (2.26):

v(ξ) = A cosλξ +B sinλξ (2.27)

satisfies the boundary conditions when A = 0 and

λ cosλ+ h0 sinλ = 0. (2.28)
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The solution to Equation (2.28) gives a set of positive eigenvalues λn numbered

in ascending order (n = 1, 2, ...). If h0 = 0, then λn = π(n − 1
2
). Assuming that

B = 1, expressions for eigenfunctions vn(ξ) can be written as:

vn(ξ) = sinλnξ (n = 1, 2, ...). (2.29)

The solution λ = 0 is excluded as it leads to a trivial solution vn(ξ) = 0.

The value of B is implicitly accounted for by the coefficients Θn(t) in Series

(2.25). The functions vn(ξ) form a full set of eigenfunction functions which are

orthogonal for ξ ∈ [0, 1]. The orthogonality of functions vn(ξ) follows from the

relation: ∫ 1

0
vn(ξ)vm(ξ)dξ = δnm || vn ||2, (2.30)

where:

δnm =

 0 n 6= m

1 n = m
,

|| vn ||2=
1

2

(
1− sin 2λn

2λn

)
=

1

2

(
1 +

h0

h2
0 + λ2

n

)
. (2.31)

It is easy to see that the expression for V (t, ξ) in the form (2.25) with vn(ξ) defined

by Equation (2.29) satisfies the boundary conditions for Equation (2.24).

The orthogonality of the functions vn(ξ) allows us to expand known functions in

Equation (2.24), and the initial conditions in the series:

f(ξ) ≡ −ξ/(1 + h0) =
∞∑
n=1

fnvn(ξ), (2.32)

W0(ξ) =
∞∑
n=1

qnvn(ξ), (2.33)

where:

fn =
1

|| vn ||2
∫ 1

0
f(ξ)vn(ξ)dξ = − sinλn

|| vn ||2 λ2
n

,

qn =
1

|| vn ||2
∫ 1

0
W0(ξ)vn(ξ)dξ.

Although both Series (2.32) and (2.33) converge, the speed of convergence of

series (2.32) can be slow. This can create a problem with applications of the new

approach to practical engineering problems.

If T0(R) is a twice continually differentiable function (this was assumed at the

very beginning of the analysis) then this property is retained by function W0(ξ). In
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this case one can show that [15]:

|qn| <
const

λ2
n

. (2.34)

Remembering Equations (2.25) and (2.32), Equation (2.24) can be rewritten as:

∞∑
n=1

(
R2
d(t)

dΘn(t)

dt
+ Θn(t)κλ2

n

)
vn(ξ) =

∞∑
n=1

(
fnR

2
d(t)

dµ0(t)

dt

)
vn(ξ). (2.35)

Both sides of Equation (2.35) are Fourier series with respect to functions vn(ξ). Two

Fourier series are equal if, and only if, their coefficients are equal. This implies that:

R2
d(t)

dΘn(t)

dt
+ Θn(t)κλ2

n = fnR
2
d(t)

dµ0(t)

dt
. (2.36)

Equation (2.36) is to be solved subject to the initial condition:

Θn(0) = qn + µ0(0)fn. (2.37)

To simplify the notation, hence-forward it is assumed that t0 = 0.

The general solution to the homogeneous equation:

R2
d(t)

dΘn(t)

dt
+ Θn(t)κλ2

n = 0 (2.38)

can be presented as:

ln (Θn(t)/Θn(0)) = −κλ2
n

∫ t

0

dt

R2
d(t)

. (2.39)

The initial condition (2.37) was used. Assuming that Rd(t) is a linear function of t

given by Equation (2.8), Solution (2.39) can be presented in a more explicit form:

Θn(t) = Θn(0) exp

[
κλ2

n

αR2
d0

(
1

1 + αt
− 1

)]
. (2.40)

One can see that the following function:

Θn (part)(t) = fn

∫ t

0

dµ0(τ)

dτ
exp

[
κλ2

n

αR2
d0

(
1

1 + αt
− 1

1 + ατ

)]
dτ (2.41)

satisfies Equation (2.36). Hence, this function can be considered as a particular

solution to Equation (2.36). Integration by parts in (2.41) allows us to present

Θn (part)(t) as:

Θn (part)(t) = fn

{
µ0(t)− µ0(0) exp

[
− κλ2

nt

Rd0Rd(t)

]
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− exp

[
κλ2

n

αRd0Rd(t)

] ∫ t

0

µ0(τ)κλ2
n

R2
d(τ)

exp

[
− κλ2

n

αRd0Rd(τ)

]
dτ

}
. (2.42)

Remembering Equations (2.40) and (2.41), the solution to Equation (2.36) can

be presented as:

Θn(t) = Θn(0) exp

[
κλ2

n

αR2
d0

(
1

1 + αt
− 1

)]

+ fn

∫ t

0

dµ0(τ)

dτ
exp

[
κλ2

n

αR2
d0

(
1

1 + αt
− 1

1 + ατ

)]
dτ. (2.43)

Remembering (2.42) and (2.37) we can write an alternative formula for Θn(t):

Θn(t) = qn exp

[
− κλ2

nt

Rd0Rd(t)

]
+ fnµ0(t)

− fnκλ2
n

∫ t

0

µ0(τ)

R2
d(τ)

exp

[
κλ2

n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ. (2.44)

Note that Θn(t) in the form (2.43) satisfies Equation (2.36), while Θn(t) in the

form (2.44) does not satisfy it. This is related to the fact that Equation (2.36)

was derived under the assumption that Series (2.25), after being substituted into

Equation (2.24), can be differentiated term by term (derivative of the series is equal

to the series of derivatives). This assumption is valid when Θn(t) is taken the form

(2.43), but it is not valid when Θn(t) is taken the form (2.44), as

µ0(t)
d2

dξ2

( ∞∑
n=1

fnvn

)
6= µ0(t)

∞∑
n=1

fn
d2vn
dξ2

(the last series diverges). Note that Series (2.25) satisfies Equation (2.24) regardless

of whether Θn(t) is taken in the form (2.43) or in the form (2.44).

In the limit αt � 1 Equation (2.43) reduces to Equation (A11) of [15] if the

effects of thermal radiation are ignored. The latter equation was derived assuming

a stationary droplet boundary during the time step of integration.

Having substituted (2.43) or (2.44) into Equation (2.25) we obtain the required

solution for V (t, ξ). Remembering that exponential terms are less or equal to 1,

the definition of fn, and condition (2.34), we can see that series (2.25) converges

absolutely and uniformly, since λ−2
n < n−2 for n > 1 (see [15]).

The final equation for temperature distribution inside the droplet can be presen-

ted as

T (R) =
1

R
√
Rd(t)

exp

[
−αRd0R

2

4κRd(t)

] [ ∞∑
n=1

Θn(t) sin

(
λn

R

Rd(t)

)
+

µ0(t)

1 + h0

R

Rd(t)

]
,

(2.45)
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where Θn are given by Equations (2.43) or (2.44).

Note that strictly speaking Equation (2.45) is an implicit function of droplet tem-

perature since α depends on droplet surface temperature Ts ) see Fig. 2.2). Hence,

the iteration process would be required. However, as follows from our calculations

(see Figs. 2.2 and 2.4-2.6), except at the very final stage of droplet evaporation, for

sufficiently small time steps, the value of Ts can be taken equal to the one obtained

at the end of the previous time step. This allows us to consider Equation (2.45) as

an explicit formula for T (R).

2.3.3 Analysis of the general case

Let us now relax our assumption that H0(t) ≡ h0 =const> −1 and assume that:

H0(t) = h0 + h1(t), (2.46)

where h0 =const> −1. Note that many of the following equations would be greatly

simplified in the case when h0 = 0. In view of (2.46) we can rewrite the boundary

condition at ξ = 1 for Equation (2.18) in the form:

[
W
′

ξ(t, ξ) + h0W (t, ξ)
]∣∣∣
ξ=1

= µ0(t)− h1(t)W (t, 1) ≡ µ̂0(t). (2.47)

Assuming that µ̂0(t) is known, we can formally use the previously obtained

solutions (2.23) and (2.25) to present the solution to Problem (2.18)–(2.22) in the

form:

W (t, ξ) =
µ̂0(t)

1 + h0

ξ + V (t, ξ) =
∞∑
n=1

sin(λnξ)qn exp

[
− κλ2

nt

Rd0Rd(t)

]

−
∞∑
n=1

sin(λnξ)fnκλ
2
n

∫ t

0

µ̂0(τ)

R2
d(τ)

exp

[
κλ2

n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ. (2.48)

In contrast to the previous case of H0(t) =const, Equation (2.48) does not give us

an explicit solution for W (t, ξ) since µ̂0(t) depends on W (t, 1).

Equation (2.48) can be presented in a more compact form:

W (t, ξ) = V(t, ξ)−
∫ t

0
µ̂0(τ)G(t, τ, ξ)dτ, (2.49)

where

V(t, ξ) =
∞∑
n=1

sin(λnξ)qn exp

[
− κλ2

nt

Rd0Rd(t)

]
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G(t, τ, ξ) = −
∞∑
n=1

sin(λnξ)
κ sin(λn)

R2
d(τ) || vn ||2

exp

[
κλ2

n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
.

Explicit expressions for fn have been used in these formulae. Both functions V(t, ξ)

and G(t, τ, ξ) are assumed to be known.

Remembering (2.47), we can rewrite Equation (2.49) as:

W (t, ξ) = V(t, ξ)−
∫ t

0
[µ0(τ)− h1(τ)W (τ, 1)]G(t, τ, ξ)dτ. (2.50)

This is an integral representation for a solution to Problem (2.18)–(2.22) for time

dependent H0(t) given by Equation (2.46). For ξ = 1, integral representation (2.50)

reduces to the Volterra integral equation of the second kind for function W (t, 1):

W (t, 1) = V(t, 1)−
∫ t

0
[µ0(τ)− h1(τ)W (τ, 1)]G(t, τ, 1)dτ. (2.51)

One can show that (see Equation (28) of [15]):

sin2 λn =
λ2
n

λ2
n + h2

0

. (2.52)

Remembering Equations (2.31) and (2.52) we obtain:

G(t, τ, 1) = − 2κ

R2
d(τ)

∞∑
n=1

λ2
n

h2
0 + h0 + λ2

n

exp

[
κλ2

n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
. (2.53)

Let us now introduce a new function G1(t, τ, ξ) defined as:

G1(t, τ, ξ) = R2
d(τ)G(t, τ, ξ), (2.54)

where 0 ≤ τ ≤ t.

The convergence of the series in G1(t, τ, ξ) for (t− τ) ∈ [δ,−1/α), where δ is an

arbitrary small positive number, is proven in Appendix 1. Moreover, in the same

appendix the validity of the estimate

|G1(t, τ, ξ)| ≤ c̃/
√
t− τ , t− τ ∈ (0, t0] (2.55)

is shown, where c̃ is a constant, and t0 is an arbitrary fixed time in the range (0, te)

(or (0,∆t)).

All results in Appendix 1 are applicable to the first series in Equation (2.48) if

we assume that τ = 0.

Equation (2.51) has a unique solution, although this solution cannot be found in

an explicit form. The numerical solution can be found as described in Appendix 2.
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Once the solution to this equation has been found we can substitute it into integral

representation (2.50) and find the required solution to the initial and boundary value

problem (2.18) – (2.22). The required distribution of T is found to be:

T (t, R) =
1

R
√
Rd(t)

exp

[
−R

′
d(t)R

2

4κRd(t)

]
W (t, R/Rd(t)). (2.56)

In the case when h1(t) = 0 and αt � 1 this solution reduces to that given by

Equation (16) of [15]. Note that in the case of h0 = 0 we have λn = π(n − (1/2))

and ||vn||2 = 1/2 in all equations.

2.4 Analysis of the solutions

As follows from the previous analysis, the importance of the effects described by the

new model depends on the value of the coefficient α given by Equation (2.9). The

plots of α versus droplet surface temperature Ts for the same values of parameters

as in [15] (see their Fig. 2.2) (Ma = 29 kg/kmole, Mf = 170 kg/kmole (C12H26),

p = 3000 kPa, a = 15.5274, b = 5383, 59), and for droplet initial radii 5 µm and

50 µm are shown in Fig. 2.2. As follows from this figure, for both initial droplet

radii the values of α can be considered negligibly small when Ts < 450 K. In this

case the conventional approach based on the assumption that Rd = const during

the time step can be accurate enough for practical applications. However, for larger

temperatures the absolute values of α start to increase rapidly, and the effects of

finite α can no longer be neglected.

The plots of T versus ξ = R/Rd for the same values of parameters as above

are shown in Fig. 2.3 for various moments of time (indicated near the curves). The

calculations have been performed using the new model, both taking into account

the evaporation process, and ignoring the effects of evaporation. In both cases, the

gas temperature was equal to 1000 K. As one can see from this figure, at times

less than about 0.15 ms for Rd0 =5 µm and less than about 15 ms for Rd0 =50

µm, the effects of evaporation on the distribution of temperature inside droplets

can be ignored. At longer times, the effects of evaporation lead to the reduction of

droplet temperature, especially in the areas near the surface. In the case without

evaporation, the predictions of the new model coincide with the predictions of the

model described in [15], as expected. Apart from the plots shown in Fig. 2.3, we
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Figure 2.2: The plots of α versus droplet surface temperature Ts for Ma = 29

kg/kmole, Mf = 170 kg/kmole (C12H26), p = 3000 kPa, a = 15.5274, b = 5383, 59,

Tg = 1000 K, and droplet initial radii 5 µm (a) and 50 µm (b).
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have performed similar calculations but for Tg = 2000 K (not shown). The plots

without evaporation for Rd0 =50 µm in this case coincided with the ones shown in

Fig. 2.2 of [15], obtained using the conventional approach.

In Fig. 2.4 we compared the results of calculations of droplet surface tempera-

tures, taking into account the effects of evaporation, using the new and conventional

approaches. Ambient conditions were the same as in Fig. 2.3, and the initial droplet

radius was assumed equal to 5 µm (typical values for Diesel engine-like conditions).

Over 1000 time steps were used for both approaches. As can be seen from this

figure, the new approach predicts slightly smaller droplet surface temperatures and

slightly longer evaporation times compared with the conventional approach. The

evaporation time predicted by the new model turned out to be more than 4% longer

than with the conventional approach (∆ ≡ (te (new)−te (conventional))/te (new) = 4.32%).

This increase in the evaporation time is certainly large enough to warrant taking

into account the effect considered in this chapter in practical modelling of droplet

heating and evaporation for engineering applications (including Diesel engines).

In Figs. 2.5 and 2.6 the same plots as in Fig. 2.4 are shown but for initial droplet

radii equal to 10 µm and 50 µm respectively. About the same number of time

steps as in Fig. 2.4 were used. As one can see from these figures, the same effect of

lower surface temperature and longer evaporation times, predicted by the new model,

compared with the conventional one, as shown in Fig. 2.4, can be observed for larger

droplets. Interestingly, the relative increase in the evaporation time (∆), predicted

by the new model, remained equal to 4.32% for all droplets under consideration.

The values of ∆ ≡ (te (new) − te (conventional))/te (new) versus Tg for Rd = 10 µm are

shown in Fig. 2.7. The calculations were performed for Tg = 800 and 1200 K apart

from already presented results for Tg = 1000 K. As one can see from this figure,

∆ is an almost linear function of Tg in the range of Tg under consideration. For

gas temperatures less than about 800 K, the effect considered in this chapter can

be ignored in most practical engineering applications. Note that the absence of any

noticeable dependence of ∆ onRd was observed for Tg = 1200 K (similarly to the case

of Tg = 1000 K). Finally, the dependence of the results on the choice of time steps

has been investigated. For Rd = 10 µm and Tg = 1000, the predicted temperatures

and evaporation times changed slightly with decreasing time steps until the value
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Figure 2.3: The plots of T versus ξ = R/Rd for the same values of parameters

as in Fig. 2.2 and various times (indicated near the curves). The calculations were

performed using the new model, taking into account the evaporation process (solid),

and ignoring the effects of evaporation (dotted) for Rd0 = 5 µm (a) and Rd0 = 50

µm (b).
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Figure 2.4: The plots of Ts versus time (a) and Rd versus time (b) for heated and

evaporating droplets using the conventional (dotted), and new (solid) approaches

for Tg = 1000 K and Rd0 = 5 µm.
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Figure 2.5: The same as Fig. 2.4 but for Rd0 = 10 µm.
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Figure 2.6: The same as Fig. 2.4 but for Rd0 = 50 µm.
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Figure 2.7: The values of ∆ ≡ (te (new)−te (conventional))/te (new) versus Tg for Tg = 1000

K and Rd0 = 5 µm.

of the time step reached about 0.003 ms. Further reduction in the time steps has

practically no effect on the results. Assuming that the true evaporation time for

both conventional and new approaches is predicted for the time step 0.003 ms, we

calculated errors which result from the choice of larger time steps as:

Error =
te(time step)− te(time step = 0.003 ms)

te(time step = 0.003 ms)
.

The values of errors versus time steps for new and conventional approaches are shown

in Fig. 2.8. For the time step equal to 0.003 ms errors predicted by both models are

equal to zero by definition. For larger time steps, the conventional approach always

leads to larger errors compared with the new approach. In other words, a given

error of calculation of the evaporation time can be associated with longer time steps

in the case of the new model than in the case of the conventional one. These errors

differ by a factor of approximately 2. Note that a serious restriction on the choice

of the time step used in calculations, based on the new approach, is imposed by the

requirement that h0 should be constant during the time step to enable us to use the

analytical solution of the heat conduction equation.

It does not seem easy to explain the physical meaning of the effect of a moving

droplet surface on droplet heating and evaporation, as the non-zero values of α affect

the solution in various ways. It would be difficult to relate it to the reduction in the
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Figure 2.8: The values of Error = te (time step)−te (time step=0.003 ms)
te (time step=0.003 ms)

versus time step

for the conventional and new approaches for Tg = 1000 K and Rd0 = 5 µm.

kinetic energy of molecules hitting the receding wall, as the velocities of molecules

and droplet surface differ by about 5 orders of magnitude.

2.5 Numerical vs analytical solutions

Although a few analytic solutions to Stefan problems are known, it is more com-

mon to apply numerical methods [110] to the problems with a moving boundary.

Amongst these methods are the boundary immobilization method [111–117], the

enthalpy method [118, 119], the variable space grid method [114, 118], the finite ele-

ment numerical method [120], the nodal integral method [121] and the heat balance

integral method [119, 122–129].

From amongst all of the above methods, the boundary immobilization method

coupled to a Keller Box discretization scheme of the one-phase one-dimensional time-

dependent governing equations appears to perform best as regards order of accuracy

and computational efficiency [116]. This algorithm is implicit, therefore not having

any limitation on the time step size, and was in addition shown to be second-order

accurate in the time and space variables. All of the methods cited above are either

of indeterminate accuracy or no higher than first-order accurate in time.

30



To compare results obtained using different methods dimensionless variables are

used: R̃ = Rd

Rd0
, θs = Ts−T0

∆T
, where we have chosen the temperature scale

∆T = L/cl from the boundary condition (2.2).

Figure 2.9: Comparison of θs vs. t obtained using three different methods: the box

scheme (solid); the method developed in this chapter (dotted); and the conventional

method for which R(t) is piecewise constant in time (dashed).

Fig. 2.9 (reproduced from [23]) compares the numerical result for θs from [23]

with the solution provided in this chapter. Fig. 2.9 also displays the result obtained

using the conventional numerical method, for which R(t) is assumed to be piecewise

constant in time. There is a clear discrepancy between this result and the others.

The result, predicted by the numerical solution, however, coincides within the ac-

curacy of plotting with the one predicted by the model described in this chapter.

The same comparison as in Fig. 2.9 but for the normalised radius is shown in

Fig. 2.10 (reproduced from [23]). As in Fig. 2.9, there is a clear discrepancy between
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Figure 2.10: Comparison of R̃ vs. t obtained using three different methods: the box

scheme (solid); the method developed in this chapter (dotted); and the conventional

method for which R(t) is piecewise constant in time (dashed).

the result obtained, assuming that R(t) is piecewise constant in time, and the results

taking into account the changes of R(t) during time steps. The results predicted

by the numerical solution coincides within the accuracy of plotting with the one

predicted by the model described in this chapter (as in the case shown in Fig. 2.9).

It is indicated in [23] that, for given values of T0 and Tg, the maximum surface

temperature reached is always the same, regardless of the initial droplet radius. Note

that this maximal temperature (wet-bulb temperature) is asymptotically approached

only in the case when the contribution of thermal radiation is ignored; when this

contribution is taken into account, the droplet temperature reaches its maximal

temperature, which is greater than the wet-bulb temperature, and then decreases,

approaching the wet-bulb temperature from above [44]. Fortunately, for the case of
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negligible thermal radiation, we are able to investigate this further analytically, as

shown in [23]. In brief, an analytical solution can be found as t→ te, and from this we

are able to find the maximum surface temperature. For the same parameter values

as were used in this chapter, we obtain 685.79 K, which is in excellent agreement with

the value of 685.68 K obtained in numerical solution and that of 685.29 K obtained

in analytical solution from this chapter.

2.6 Conclusions of Chapter 2

New solutions to the heat conduction equation, describing transient heating of an

evaporating droplet, are suggested. These solutions take into account the effect of

the reduction of the droplet radius due to evaporation, assuming that this radius is

a linear function of time. The latter assumption does not allow us to apply these

solutions to describe the whole process, from the start of evaporation, until the

moment in time when the droplet completely evaporates. However, these solutions

are expected to be used to describe droplet heating and evaporation over a small time

step when other parameters, except droplet radius and temperature, can be assumed

constant. In this case they can be considered as generalisations of the approach

currently used in all research and commercial computational fluid dynamics (CFD)

codes known to us (KIVA, FLUENT, PHOENICS etc.), in which it is assumed that

droplet radius is constant during the time step.

The solution is presented in the explicit analytical form in the case when parame-

ter h0 can be assumed to be constant greater than −1 during the time step. In the

general case of a time dependent h0 the solution of the differential heat conduction

equation is reduced to the solution of the Volterra integral equation of the second

kind.

The analytical solution has been incorporated into the zero dimensional CFD

code and applied to the analysis of Diesel fuel droplet heating and evaporation in

typical engine conditions. Effects of droplets on gas have been ignored at this stage.

The results have been compared with those which follow from the conventional

(traditional) approach to modelling droplet heating and evaporation, based on the

assumption that the droplet radius is constant over the time step (but changes from
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one time step to another). It has been pointed out that the new approach leads to

the prediction of lower droplet temperatures and longer evaporation times than the

traditional method. For typical Diesel engine-like conditions and Tg = 1000 K, the

evaporation time predicted by the new approach turned out to be about 4.5% longer

compared with the conventional method regardless of the value of the initial droplet

radius, and this needs to be taken into account in practical engineering applications.

This difference increased to about 7% for Tg = 1200 K, and decreased to about 2%

for Tg = 800 K.

Larger time steps can be used in the case of the new approach compared with

the conventional one to achieve the same accuracy of calculation.

The boundary immobilization method was considered, in tandem with the Keller

box finite-difference scheme, for the accurate numerical solution of the problem. An

important component of this was the use of variable transformations that must be

built into the numerical algorithm in order to preserve second-order accuracy in both

time and space for the temperature and the heat flux. This solution was found to

agree well with that obtained using an algorithm described earlier in this Chapter.
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Chapter 3

Transient heating of an

evaporating droplet with

presumed time evolution of its

radius

3.1 Introduction of Chapter 3

As mentioned in Chapter 2,the conventional approach to the modelling of droplet

heating and evaporation is based on the assumption that droplet radius remains

constant during each time step, but changes from one time step to another due to the

evaporation process [1, 44]. In Chapter 2 we took into account the time evolution of

droplet radius Rd(t) assuming that Rd(t) is a linear function of time during the time

step. It was shown that this approach not only allows the reduction of the number

of time steps required for the calculation, but also leads to the prediction of lower

droplet temperatures and longer evaporation times compared with the conventional

approach. These new and in practice important results encouraged us to investigate

this problem further and relax our assumption that Rd(t) is a linear function of time.

The results of our investigation are presented in this chapter. Some preliminary

results and their analysis were presented in [29].

Basic equations and approximations used in the analysis are the same as in

Chapter 2.
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3.2 Solution for the case of arbitrary Rd(t) but

Td0(R) = const

The analysis of this Chapter is based on the assumption that Td0(R) = Td0 =const.

In this case we can introduce the new variable v = u−RTd0 and rearrange Equation

(2.12) as:
∂v

∂t
= κ

∂2v

∂R2
(3.1)

for t ∈ (0, te) and R ∈ (0, Rd(t)) with the boundary conditions(
∂v

∂R
+H(t)v

)∣∣∣∣∣
R=Rd(t)

= µ0(t), (3.2)

v|R=0 = 0 (3.3)

for t ∈ (0, te) and the initial condition

v|t=0 = 0 (3.4)

for R ∈ (0, Rd(t)), where

µ0(t) = −Td0 −H(t)Rd(t)Td0 + µ(t) = −h(t)

kl
Rd(t)Td0 + µ(t).

We look for the solution to the problem (3.1) – (3.4) in the form:

v(R, t) =
∫ t

0
ν(τ)G(t, τ, R)dτ, (3.5)

where

G(t, τ, R) = G0(t− τ, R−Rd(τ))−G0(t− τ, R +Rd(τ)),

G0(t, x) =

√
κ

2
√
πt

exp

[
− x2

4κt

]
.

Expression G(t, τ, R) can be presented in an alternative form:

G(t, τ, R) =

√
κ

2
√
π(t− τ)

{
exp

[
−(R−Rd(τ))2

4κ(t− τ)

]
− exp

[
−(R +Rd(τ))2

4κ(t− τ)

]}
. (3.6)

Note that G(t, τ, R = 0) = 0. ν(t) is an unknown continuous function to be found

later from one of the boundary conditions. Function v(R, t) is known as a single

layer heat potential and it has the following properties for any continuous function

ν(t) [105, 130]:

1) It satisfies Equation (3.1) for 0 < t < te and 0 < R < Rd(t);
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2) It satisfies Conditions (3.3) and (3.4);

3) It is continuous at R→ Rd − 0;

4) For the derivative ∂v(R, t)/∂R the following limiting formula is valid:

∂v(R, t)

∂R

∣∣∣∣∣
R→Rd(t)−0

=
ν(t)

2
+
∫ t

0
ν(τ)

[
∂G(t, τ, R)

∂R

]∣∣∣∣∣
R=Rd(t)

dτ. (3.7)

This means that for any continuous function ν(t) the potential v(R, t) satisfies

Equation (3.1) and boundary and initial conditions (3.3) and (3.4). Choice of the

function ν(t), satisfying integral Equation (3.7), should be made in such a way that

the remaining boundary condition (3.2) is satisfied as well.

From Equation (3.6) it follows that

∂G(t, τ, R)

∂R

∣∣∣∣∣
R=Rd(t)

= − 1

4
√
πκ(t− τ)3/2

×
{

(Rd(t)−Rd(τ)) exp

[
−(Rd(t)−Rd(τ))2

4κ(t− τ)

]

−(Rd(t) +Rd(τ)) exp

[
−(Rd(t) +Rd(τ))2

4κ(t− τ)

]}
. (3.8)

Since Rd(t) is a continuously differentiable function, we obtain in the limit τ → t−0:

∂G(t, τ, R)

∂R

∣∣∣∣∣
R=Rd(t)

∝ O

(
1√
t− τ

)
. (3.9)

It follows from this equation, that there is an improper integral on the right hand

side of Equation (3.7).

In view of Equations (3.7) and (3.5) we can rewrite the boundary condition (3.2)

as:

ν(t)

2
+
∫ t

0
ν(τ)

[
∂G(t, τ, R)

∂R

]∣∣∣∣∣
R=Rd(t)

dτ +H(t)
∫ t

0
ν(τ)G(t, τ, Rd(t))dτ = µ0(t),

or

ν(t)

2
+
∫ t

0
ν(τ)


[
∂G(t, τ, R)

∂R

]∣∣∣∣∣
R=Rd(t)

+H(t)G(t, τ, Rd(t))

 dτ = µ0(t), (3.10)

where G(t, τ, R) and its derivative with respect to R are defined by Equations (3.6)

and (3.8).

As follows from the definition of G(t, τ, Rd(t)) (see Equation (3.6)), in the limit

τ → t− 0 this function has the singularity:

G(t, τ, Rd(t)) ∝ O

(
1√
t− τ

)
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(cf. Equation (3.9)). Therefore, the integral in Equation (3.10) is defined as an

improper integral.

Equation (3.10) is an integral equation of Volterra type. It has a unique conti-

nuous solution. A scheme for its numerical solution is described in Appendix 3.

This solution is then substituted into Equation (3.5). The final distribution of tem-

perature inside the droplet can be calculated from the following expression:

T (t, R) = Td0 +

√
κ

2R
√
π

∫ t

0

ν(τ)√
t− τ

{
exp

[
−(R−Rd(τ))2

4κ(t− τ)

]

− exp

[
−(R +Rd(τ))2

4κ(t− τ)

]}
dτ. (3.11)

Details of the numerical calculation of the integral on the right hand side of Equation

(3.11) are given in Appendix 4.

3.3 Solution for the case of arbitrary Rd(t)and Td0(R)

Let us assume that an arbitrary twice continuously differentiable function Td0(R) is

defined for 0 ≤ R ≤ Rd0. This definition is extended for the whole range 0 ≤ R <∞:

Td0(R) =


Td0(R) when 0 ≤ R ≤ Rd0

Tout(R) when Rd0 < R ≤ Reff

0 when R > Reff ,

(3.12)

where

Tout(R) =
1

R

{
Rd0Td0(Rd0) + (R−Rd0)

[
(RTd0(R))

′

R

∣∣∣
R=Rd0

]}
,

Reff is the effective outer radius such that Reff > Rd0. Function Td0(R) defined by

Equation (3.12) is continuously differentiable in the range 0 ≤ R ≤ Reff .

Let us now introduce a new function U(t, R) defined as:

U(t, R) =
∫ Reff

0
(ζTdo(ζ))G1(t, R, ζ)dζ, (3.13)

where

G1(t, R, ζ) =
1

κ
[G0(t, R− ζ)−G0(t, R + ζ)] ,

G0(t, x) is the same as in Equation (3.5). Remembering the latter equation, the

expression G1(t, R) can be presented in an alternative form:

G1(t, R) =
1

2
√
πtκ

{
exp

[
−(R− ζ)2

4κt

]
− exp

[
−(R + ζ)2

4κt

]}
. (3.14)
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Note that G1(t, R = 0) = 0.

Function U(t, R) has the following properties [105, 130]:

1) It satisfies Equation (3.1) for 0 < t < te and 0 < R <∞;

2) It satisfies the boundary Condition (3.3) for 0 < t < te;

3) It satisfies the initial condition

U(t, R)|t=+0 =

 RTd0(R) when 0 ≤ R ≤ Reff

0 when R > Reff .
(3.15)

The latter relation follows from the property of the delta-function:

lim
αdelta→∞

αdelta√
π

exp(−α2
deltax

2) = δ(x). (3.16)

We look for the solution to Equation (2.12) in the form:

u(t, R) = U(t, R) + v(t, R). (3.17)

Having substituted Equation (3.17) into Equation (2.12) and boundary and initial

conditions (2.13) – (2.15), we obtain problem (3.1) – (3.4) for v(t, R) in which

µ0(t) = −
[
U
′

R(t, R) +H(t)U(t, R)
]∣∣∣
R=Rd(t)

+ µ(t). (3.18)

The solution of the latter problem is similar to the one discussed in Section 4.

The expression for µ0(t) contains

U
′

R(t, R)
∣∣∣
R=Rd(t)

=
∫ Reff

0
(ζTdo(ζ))

∂G1(t, R, ζ)

∂R

∣∣∣∣∣
R=Rd(t)

dζ, (3.19)

where

∂G1(t, R, ζ)

∂R

∣∣∣∣∣
R=Rd(t)

=
1

κ

[
∂

∂R
(G0(t, R− ζ)−G0(t, R + ζ))

]∣∣∣∣∣
R=Rd(t)

=
1

κ

[
∂

∂ζ
(−G0(t, R− ζ)−G0(t, R + ζ))

]∣∣∣∣∣
R=Rd(t)

, (3.20)

G0 is the same as in Equation (3.5). Remembering the latter equation we can rewrite

the expression for ∂G1(t,R,ζ)
∂R

∣∣∣
R=Rd(t)

in a more explicit form:

∂G1(t, R, ζ)

∂R

∣∣∣∣∣
R=Rd(t)

= − 1

4
√
π(κt)3/2

{
(R− ζ) exp

[
−(R− ζ)2

4κt

]

−(R + ζ) exp

[
−(R + ζ)2

4κt

]}∣∣∣∣∣
R=Rd(t)

.
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Hence, we obtain an explicit expression for µ0(t) in the form:

µ0(t) =
1

4
√
π(κt)3/2

∫ Reff

0
(ζTd0(ζ))

{
(Rd(t)− ζ) exp

[
−(Rd(t)− ζ)2

4κt

]

−(Rd(t) + ζ) exp

[
−(Rd(t) + ζ)2

4κt

]}
dζ

− H(t)

2
√
πκt

∫ Reff

0
(ζTd0(ζ))

{
exp

[
−(Rd(t)− ζ)2

4κt

]
− exp

[
−(Rd(t) + ζ)2

4κt

]}
dζ

+M(t)Rd(t). (3.21)

In the limit t→ 0+ the expression for µ0(t) is simplified to (see Appendix 5):

µ0(0) = −
[
(ζTdo(ζ))

′

ζ

∣∣∣
ζ=Rd0

+H(0)Rd0Td0(Rd0)
]

+ µ(0). (3.22)

Combining Equations (3.5) and (3.17) we can present the final solution to our

problem in the form:

T (t, R) =
1

R

[
U(t, R) +

√
κ

2
√
π

∫ t

0

ν(τ)√
t− τ

{
exp

[
−(R−Rd(τ))2

4κ(t− τ)

]

− exp

[
−(R +Rd(τ))2

4κ(t− τ)

]}
dτ

]
, (3.23)

where ν(τ) is the solution to Equation (3.10) with µ0(t) given by Equation (3.21),

U(t, R) is given by Equation (3.13).

Note that taking into account the initial distribution of temperature along R is

absolutely essential when the solution is applied to individual time steps. In the

solution described in the last two sections, however, the same formulae describe the

time evolution of droplet temperatures during the whole period of their evaporation.

It is anticipated that in this case the effect of the initial distribution of droplet

temperatures is not important in most practical applications. Hence, the solution

described in Section 3.2 is expected to be more practically important than the

solution described in this section.

Note that although the analysis presented so far refers to stationary droplets, it

can be generalised in a straightforward way to the case of moving droplets, based

on the effective thermal conductivity model [1, 44].
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3.4 Implementation of the new solutions into a

numerical code

In the solutions presented in the last two sections it was assumed that Rd(t) is

known. From the point of view of the physical background to the problem, however,

Rd(t) depends on the time evolution of the droplet temperature T (R, t), which is

the solution to the problem. Hence, an iterative process is required. Firstly, the

time evolution of droplet radius Rd(t) is obtained using the conventional approach,

when it remains constant during the time step, but changes from one time step to

another due to the evaporation process. Then these values of Rd(t) are used in the

new solutions to obtain updated values of the time evolution of the distribution

of temperatures inside the droplet and on its surface T (R, t). These new values of

droplet temperature are used to update the function Rd(t). This process is continued

until convergence is achieved, which typically takes place after about 15 iterations.

3.5 Results

In Figs. 3.1-3.7 we compared the results of calculations of droplet surface tempera-

tures and radii, taking into account the effects of evaporation, using the new integral

solution for arbitrary Rd(t) but constant Td0 (Equation (3.11)), the previously repor-

ted solution, based on the linear approximation of Rd(t) (Equation (2.45)), and the

conventional approach based on the assumption that droplet radius does not change

during the time step. Droplets are assumed to be those of n-dodecane (Mf = 170

kg/kmole), and ambient air is assumed to be at the pressure of p = 30 atm = 3000

kPa (typical values for Diesel engine-like conditions).

The results of calculations for Rd0 = 5 µm, and ambient air temperature 1000

K are shown in Fig. 3.1. One thousand time steps were used in the conventional

approach and the approach based on Solution (2.45). In the integral solution based

on Equation (3.11) the integral (A41) was approximated as the sum of 100 terms,

and up to 15 iterations were used. At the first iteration the time evolution of the

droplet radius was assumed to be the same as predicted by the conventional model.

As follows from Fig. 3.1, the results predicted by the integral solution (3.11)
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Figure 3.1: The plots of Ts versus time (a) and Rd versus time (b) using the

conventional model (thick solid), integral model based on Equation (3.11) (dashed)

and linear model (thin solid) for a stationary n-dodecane (Mf = 170 kg/kmole)

droplet with an initial radius 5 µm, evaporating in ambient air at a pressure of

p = 30 atm = 3000 kPa and temperature 1000 K.
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and linear solution (2.45) practically coincide, which suggests that both approaches

are correct and valid. Both these solutions predict lower droplet temperatures and

longer evaporation times in agreement with the results reported in previous Chapter.

Note that deviations between the predictions of the integral and linear solutions

were observed in the immediate vicinity of the time when the droplet completely

evaporates.

There were obvious numerical problems when we approached this time due to the

fact that the time derivative of Rd becomes infinitely large. In practice the extrapo-

lation, based on the assumption that the second derivative of Rd(t) is constant, was

used for these times. This leads to small deviations between the predicted evapo-

ration times. In the case shown in Fig. 3.1, the evaporation times predicted by the

conventional model, linear solution, and integral solution were 0.595 ms, 0.622 ms

and 0.628 ms respectively. That means that the difference between the evaporation

times predicted by the linear and integral solutions was less than 1% and can be

safely ignored in most practical applications (this error can be reduced further if

required). The same comment applies to other cases considered below.

The effect of the choice of the number of iterations on the prediction of the in-

tegral solution is illustrated in Fig. 3.2 for the same case as shown in Fig. 3.1. This

effect is shown only for the times when the deviation between the results predicted

by the linear and integral solutions is maximal. For the first iteration, the time

evolution of droplet radius is the same as predicted by the conventional model. The

deviation of the corresponding droplet temperatures predicted by the integral and

linear solutions appears to be quite noticeable. For the fifth iteration the droplet

surface temperatures predicted by the integral and linear solutions practically coin-

cide up to t ≈ 0.45 ms. The corresponding plots of Rd(t), predicted by the integral

solution, turned out to be closer to those predicted by the linear solution than those

predicted by the conventional model. The closeness between the plots predicted by

the linear and integral solutions improved as the number of iterations increased. Ho-

wever, even for the 15th iteration the deviation between the results remains visible,

although not important for practical applications (cf. Fig. 3.1). For higher itera-

tions the results are practically indistinguishable from those predicted by the 15th

iteration. Interestingly, odd iterations predicted smaller Rd(t) and even iterations
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Figure 3.2: The same as Fig. 3.1 but for different numbers of iterations in the

integral solution.

predicted larger Rd(t) compared with those predicted by the linear solution. At

the qualitative level this could be related to the fact that a faster evaporation rate,

assumed for the first iteration (conventional model), leads to a lower droplet surface

temperature. At the second iteration, this lower droplet surface temperature leads

to a slower evaporation rate etc.

As to the computational efficiency of the new integral model, we note that for a

PC Xeon 3000 Hz (the calculations were processed on one kernel only) with 2 GB

RAM, the conventional approach requires 3586 s to calculate 1191 steps. Once these

calculations have been completed, the integral model requires 453 s to calculate

15 iterations. This makes this model potentially suitable for incorporation into
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Figure 3.3: The same as Fig. 3.1 but for a droplet with initial radius 50 µm.

computational fluid dynamics (CFD) codes.

The results, similar to those shown in Fig. 3.1, but for droplets with initial radii

50 and 100 µm are shown in Figs. 3.3 and 3.4 respectively. As can be seen from these

figures, the plots of droplet surface temperatures and radii are largely unaffected by

the initial droplet radii. This agrees with similar results reported in Chapter 2 (see

Figs. 2.4-2.6 ).

The results, similar to those shown in Fig. 3.1, but for the gas temperatures 800

and 1000 K are shown in Figs. 3.5 and 3.6 respectively. Comparing Figs. 3.1 and 3.5

one can see that a decrease in gas temperature by 20% leads to an increase in the

evaporation time predicted by all models by more than 50%. The results predicted
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Figure 3.4: The same as Figs. 3.1 and 3.3 but for a droplet with initial radius 100

µm.
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by the integral and linear solutions for gas temperature equal to 800 K, are much

closer to those predicted by the conventional model than is the case for gas tempe-

rature equal to 1200 K. In the case of droplet surface temperature, they are hardly

distinguishable, and we had to use an insert figure to zoom the difference between

them. As in the case shown in Fig. 3.1, the results predicted by the integral and

linear models for gas temperatures 800 and 1200 K practically coincide. Comparing

Figs. 3.1 and 3.6 one can see that an increase in gas temperature by 20% leads to

a decrease in the evaporation time predicted by all models of more than 25%. The

deviation between the results predicted by the integral and linear models and those

predicted by the conventional model is noticeably larger in the case shown in Fig.

3.6 than in the case shown in Figs. 3.1 and 3.5, in agreement with similar results

reported in Chapter 2 (see Fig. 2.7 ). Also, for the case shown in Fig. 3.6, the

deviation between the results predicted by the integral and linear models is much

more visible compared with the previous plots, especially at the final stage of droplet

evaporation.

The plots of T versus ξ = R/Rd for T (R, t = 0) ≡ Td0(R) = 300 K, Rd0 = 5 µm,

Tg = 1000 K and various moments of time (indicated near the curves) are shown

in Fig. 3.7. The calculations were performed based on Equation (3.11) (the case

of constant Td0(R)) and Equation (3.23) (the general case of arbitrary Td0(R)). As

can be seen from this figure, the predictions of Equations (3.11) and (3.23) coincide.

This shows the correctness of both approaches to the problem. In agreement with

the earlier models described in [1] and [19], Fig. 3.7 shows that the gradient of

temperature inside droplets cannot be ignored at least at the initial stage of droplet

heating and evaporation.

The effect of non-constant initial distribution of droplet temperature on the

time and space evolution of this distribution is illustrated in Fig. 3.8. Two cases

are compared in this figure. In both cases, the initial droplet radii are assumed

to be equal to 5 µm, and gas temperature is assumed to be constant and equal to

Tg = 1000 K. In the first case the initial distribution of temperature was assumed to

be independent on R (or ξ) and equal to 300 K, as in the case shown in Fig. 3.7. In

this case the analysis was based on Equation (3.11). In the second case, the initial
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Figure 3.5: The same as Fig. 3.1 but for an ambient gas temperature equal to 800

K.

48



Figure 3.6: The same as Figs. 3.1 and 3.5 but for an ambient gas temperature equal

to 1200 K.
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Figure 3.7: The plots of T versus ξ = R/Rd for a stationary n-dodecane (Mf = 170

kg/kmole) droplet with initial radius 5 µm, evaporating in ambient air at a pressure

of p = 30 atm = 3000 kPa and temperature 1000 K. The moments of time are indi-

cated near the curves. The calculations were performed based on Equations (3.11)

(derived for constant initial distribution of temperatures inside droplets) and (3.23)

(derived for the general case of the arbitrary distribution of the initial temperature

inside the droplet).
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Figure 3.8: The same as Fig. 3.7 but for the general solution (Equation (3.23)

applied to the case when the initial distribution of temperature inside the droplet is

given by Equation (3.24)).

distribution of droplet temperature was approximated as

Td0(R) = 300 + 10(R/Rd0)2 = 300 + 10(ξ)2, (3.24)

and the analysis was based on Equation (3.23).

Comparing the plots referring to both cases, shown in Fig. 3.8, one can see that

these plots visibly converge with time. This can be related to the fact that increased

droplet surface temperature in the general case leads to decreased convective heating

of droplets. Hence the droplet surface temperature increases more slowly in the

general case than in the case of constant initial temperature inside droplets.

We appreciate that the errors associated with the conventional assumption that

the droplet radii remain constant during the time step can be comparable with or

even larger than those associated with other effects, including uncertainties in gas

temperature measurements, convection heat transfer coefficient approximations and

effect of interactions between droplets in realistic sprays. The importance of the

latter effect is discussed in [14, 38], but its analysis lies beyond the scope of this

Chapter.
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3.6 Conclusions of Chapter 3

Two new solutions to the heat conduction equation, describing transient heating of

an evaporating droplet, are suggested, assuming that the time evolution of droplet

radius Rd(t) is known. The initial droplet temperature is assumed to be constant

or allowed to change with the distance from the droplet centre. The results turned

out to be the simplest in the first case and the main focus of our analysis is upon

these. Since Rd(t) depends on the time evolution of the droplet temperature, an

iterative process is required. Firstly, the time evolution of Rd(t) is obtained using

the conventional approach, when it remains constant during the time step, but

changes from one time step to another. The droplet surface temperature in this case

is obtained from the analytical solution of the heat conduction equation inside the

droplet. It is assumed that this droplet is heated by convection from the ambient

gas, and its radius remains constant during the time step. Then these values of

Rd(t) are used in the new solutions to obtain updated values of time evolution of

the distribution of temperatures inside the droplet and on its surface. These new

values of droplet temperature are used to update the function Rd(t). This process

continues until convergence is achieved, which typically takes place after about 15

iterations. The results of the calculations of droplet surface temperature, using this

approach, are compared with the results obtained using the previously suggested

approach when the droplet radius was assumed to be a linear function of time during

individual time steps for typical Diesel engine-like conditions. For sufficiently small

time steps the time evolutions of droplet surface temperatures and radii, predicted

by both approaches coincide. This suggests that both approaches are correct and

valid. Similarly to the case when droplet radius is assumed to be a linear function of

time during the time step, the new solution predicts lower droplet temperatures and

slower evaporation when the effects of the reduction of Rd are taken into account.

It is shown that in the case of constant droplet initial temperature, models both

taking and not taking into account the changes in initial droplet temperature with

the distance from the droplet centre, predict the same results. This suggests that

both models are likely to be correct. It is shown that the temperatures predicted

by the models based on the assumption of constant initial droplet temperature, and

the one taking into account the increase in this temperature with the distance from
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the droplet centre, tend to converge with time.
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Chapter 4

New solutions to the species

diffusion equation inside droplets

in the presence of the moving

boundary

4.1 Introduction of Chapter 4

The species diffusion equation, describing the dynamics of multi-component systems,

its analysis and applications, has been widely discussed in the literature [53]. One of

the most important applications of this equation is that to the analysis of evaporation

of multi-component droplets [1, 54]. In realistic moving droplets, species diffusion

takes place alongside species convection when Hill-type vortices are formed inside

droplets [55]. In most practically relevant cases, however, the details of species

distribution inside droplets are not important and the effects of species diffusion and

convection can be described in terms of the spherically symmetric effective diffusivity

model [1]. In [38] this model was applied to the analysis of heating and evaporation of

bi-component ethanol/acetone droplets. In contrast to the previous studies of these

processes, the authors of [38] based their analysis on the analytical solution to the

species diffusion equation, which was incorporated into the numerical code, rather

than on the numerical solution of this equation. This approach is expected to be

more CPU efficient and accurate compared with the one based on the conventional
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approach [16]. The model described in [38] has been generalised in [50] to take into

account coupling between droplets and gas. As shown in Chapter 2, 3 and [23], in the

case of the thermal conduction equation inside droplets the approximation that the

droplet radius is constant during a time step leads to noticeable overestimation of

droplet surface temperature and underestimation of its evaporation time, compared

with the approach in which the change in droplet radius during the time step is

ignored. Pared with the approach in which the change in droplet radius during the

time step is ignored.

The main purpose of this chapter is to generalise the analytical solution to the

species diffusion equation, reported in [38, 50], to the case when the changes in

droplet radius during the time steps are taken into account. This new solution will

be applied to the analysis of bi-component droplet evaporation. The importance

of taking into account the changes in droplet radius during the time step will be

investigated.

Basic equations and approximations for multi-component droplets used in our

analysis are presented and discussed in Section 4.2. The details of the new analytical

solution of the species diffusion equation are given in Section 4.3. In Section 4.4

this solution is applied to the analysis of bi-component droplet evaporation. Some

results of calculation, taking into account the effects of the moving boundary on heat

conduction and species diffusion equation inside droplets are presented in Section

4.5.The main results of the Chapter are summarised in Section 4.5.

4.2 Basic equations for multi-component droplets

Assuming that all processes inside droplets are spherically symmetric (droplets are

stationary), the equations for mass fractions of liquid species Yli ≡ Yli(t, R) inside

multi-component droplets can be presented in the following form [1]:

∂Yli
∂t

= Dl

(
∂2Yli
∂R2

+
2

R

∂Yli
∂R

)
, (4.1)

where i > 1, Dl is the liquid mass diffusivity. Yli(t, R) is a twice continuously diffe-

rentiable function. Equation (4.1) needs to be solved with the following boundary

condition [1]:

αm(εi − Ylis) = −Dl
∂Yli
∂R

∣∣∣∣∣
R=Rd(t)−0

, (4.2)
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and the initial condition Yli(t = 0) = Yli0(R), where Ylis = Ylis(t) are liquid compo-

nents’ mass fractions at the droplet’s surface,

αm =
|ṁd|

4πρlR2
d

, (4.3)

εi is the evaporation rate of species.

Note that 0 ≤ Yli ≤ 1 due to the physical nature of this parameter.

We assume that Rd(t) is the linear function of t during each time step, described

by Equation (2.8) in which α = −αm/Rd0.

Although αm and α are linked by a simple relation, it is important for us to

retain the difference between these two parameters in this Chapter. αm describes

the rate of removal of species from the surface of the droplet, while α describes the

rate of change in droplet radius during time steps. The latter effect was ignored in

most previous analysis of this phenomenon, including [38, 50], where it was assumed

that α = 0, but αm 6= 0 was still defined by Equation (4.3). In our analysis both

these effects are taken into account.

Assuming that species concentrations in the ambient gas are equal to zero (Yvi∞ =

0), the values of εi can be found from the following relation [38]:

εi(t) =
Yvis∑
i Yvis

, (4.4)

where the subscript v indicates the vapour phase. We assume that εi are still defined

by Equation (4.4) even in the case when these concentrations are not equal to zero.

Equation (4.1) can be generalised to take into account the effect of moving droplets

with the help of the effective diffusivity model [1] in which Dl in Equation (4.1) is

replaced with

Deff = χYDl, (4.5)

where the coefficient χY varies from 1 to 2.72 and can be approximated as:

χY = 1.86 + 0.86 tanh [2.245 log10 (RelScl/30)] , (4.6)

Scl is the liquid Schmidt number defined as:

Scl =
νl
Dl

, (4.7)

νl is the liquid kinematic viscosity, Rel is the Reynolds number based on droplet

radius, liquid transport properties and the maximum surface velocity inside droplets.
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The latter velocity was calculated as [44]:

Us =
1

32
∆U

(
µg
µl

)
RedCF , (4.8)

where ∆U ≡ Ug−Ud is the relative velocity between ambient gas and droplets, µg(l)

is the dynamic viscosity of gas (liquid), Red is the droplet Reynolds number based

on the droplet diameter (denoted as Re∞ in [44]), CF is the friction drag coefficient

estimated as [44]:

CF =
12.69

Re
2/3
d (1 +BM)

. (4.9)

The value of Us, predicted by Equation (4.8), is about 1.7 times less than predicted

in [11], using an approach which differs slightly from the one suggested in [44].

Remembering that the result predicted by Equation (4.8) is closer to the earlier

obtained numerical results (see [44] for the details), we decided to use (4.8) rather

than the corresponding equation, given in [11] (see his Equation (2.74g)). Also,

following [44] we used the coefficient 2.245, instead of 2.225, used in [11]. Note that

for the values of parameters for which the new solution will be tested, χY ≈ 2.72

most of the time, and the results remain practically unchanged when Us in the

expression for Rel is replaced with ∆U .

In the case of isolated moving mono-component droplets, their evaporation rate

is given by the following equation [1]:

ṁd = −2πRdDvρtotalBMShiso, (4.10)

where Dv is the binary diffusion coefficient of vapour in air, BM is the Spalding

mass transfer number, introduced in Equation (2.5), Shiso is the Sherwood number

approximated for isolated droplets by the following expression:

Shiso = 2
ln(1 +BM)

BM

1 +
(1 + RedSca)

1/3 max
[
1,Re0.077

d

]
− 1

2F (BM)

 , (4.11)

Sca =
νa
Dv

is the Schmidt number for the ambient gas,

F (BM) = (1 +BM)0.7 ln(1 +BM)

BM

.

It is assumed that this equation is valid for multi-component droplets by replacing

Yv with
∑
i Yvi. The effects of interactions between droplets could be accounted for
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by correcting the expression for Shiso (see [38, 49] for details). This effect is not

taken into account in our analysis.

Note that Equation (4.10) is valid for arbitrary Lewes numbers, while the equa-

tion for ṁd used in Chapters 2 and 3 is valid only for Lewes numbers equal to

1.

To calculate the species mass evaporation rate ṁi and the values of the evapora-

tion rate of species εi, based on Equation (4.4), we need to calculate first the values

of Yvis. The latter depends on the partial pressure of species i in the vapour state

in the immediate vicinity of the droplet surface [38]:

pvis = Xlisγip
∗
vis, (4.12)

where Xlis is the molar fraction of the ith species in the liquid near the droplet

surface, p∗vis is the partial vapour pressure of the ith species in the case whenXlis = 1,

γi is the activity coefficient. In our analysis we assume that γi = 1 (the Raoult law

is valid).

Remembering the Clausius-Clapeyron equation, Equation (4.12) for γi = 1 can

be rewritten as [38]:

pvis = Xlispamb exp
[
LiMi

Ru

(
1

Tbi
− 1

Ts

)]
, (4.13)

where Mi is the molar mass and Tbi is the boiling temperature of the ith species, pamb

is the ambient pressure, Ru is the universal gas constant. When deriving Equation

(4.13) it was taken into account that p∗vis is equal to the ambient pressure when

Ts = Tbi, Li is the latent heat of evaporation of species i.

Equation (4.13) is the generalisation of Equation 2.7.

4.3 Analytical solution of Equation (4.1)

Based on [19, 105], we introduce the following parameters and functions:

ξ = R/Rd(t), (0 ≤ ξ ≤ 1), F (t, ξ) = RYli(t, ξRd0),

F (t, ξ) =
1√
Rd(t)

exp

[
−R

′
d(t)Rd(t)

4Dl

ξ2

]
W (t, ξ). (4.14)
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These allow us to rewrite Equation (4.1), the corresponding initial condition and

boundary condition (4.2) as:

R2
d(t)W

′

t (t, ξ) = DlW
′′

ξξ(t, ξ), (4.15)

where t ≥ 0,

W (t, ξ)|t=0 = W0(ξ) ≡ R
3/2
d0 ξYli0(ξRd0) exp

[
R
′
d(0)Rd0

4Dl

ξ2

]
, (4.16)

W (t, ξ)|ξ=0 = 0, (4.17)[
W
′

ξ(t, ξ) +H0(t)W (t, ξ)
]∣∣∣
ξ=1

= µ0(t) ≡ −αmεi (Rd(t))
5/2

Dl

exp

[
R
′
d(t)Rd(t)

4Dl

]
, (4.18)

where:

H0(t) = −αm
Dl

Rd(t)− 1− R
′
d(t)Rd(t)

2Dl

.

Condition (4.17) is an additional boundary condition, which follows from the requi-

rement that Yli(t, R) is a twice continuously differentiable function. When deriving

(4.15) we took into account that d2Rd/dt
2 = 0.

Further simplification of Equation (4.15) and the corresponding initial and boun-

dary conditions is possible when we apply this equation to a short time step. In this

case we can ignore the time dependence of H0(t) and assume that H0(t) ≡ h0 =const.

Remembering Equation (2.8) we can write

h0 = −αm
Dl

Rd(t)−
αRd0

2Dl

Rd(t)− 1 ≈ −αm
Dl

Rd0 −
αRd0

2Dl

Rd0 − 1 < −1. (4.19)

It is essential for us to retain both αm and α in the expression for h0 if we intend to

compare our results with the results of the conventional analysis when α = 0, but

αm 6= 0.

Our next goal is to find such change of variables that the inhomogeneous boun-

dary condition (4.18) is replaced by the homogeneous one. This is achieved by the

introduction of the new function V (t, ξ) via the relation:

W (t, ξ) = V (t, ξ) +
µ0(t)

1 + h0

ξ. (4.20)

Formula (4.20) allows us to rearrange Equation (4.15) to:

R2
d(t)V

′

t (t, ξ) = DlV
′′

ξξ(t, ξ)−
µ
′
0(t)

1 + h0

R2
d(t)ξ, (4.21)
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The initial and boundary conditions for Equation (4.21) can be presented as:

V (t, ξ)|t=0 = W0(ξ)− µ0(0)

1 + h0

ξ,

V (t, ξ)|ξ=0 = 0,
[
V
′

ξ (t, ξ) + h0V (t, ξ)
]∣∣∣
ξ=1

= 0.

As in Chapter 2, we look for the solution of Equation (4.21) in the form:

V (t, ξ) =
∞∑
n=0

Θn(t)vn(ξ), (4.22)

where functions vn(ξ) form the full set of non-trivial solutions to the equation:

d2v

dξ2
+ pv = 0, 0 ≤ ξ ≤ 1, (4.23)

subject to boundary conditions:

v|ξ=0 =

(
dv

dξ
+ h0v

)∣∣∣∣∣
ξ=1

= 0. (4.24)

For p = 0, Equation (4.23) has no non-trivial solutions, satisfying the boundary

conditions (4.24). For p ≡ −λ2 < 0, this equation has the solution:

v0(ξ) = sinh (λ0ξ) , (4.25)

where λ0 is the solution to the equation

tanhλ = − λ

h0

. (4.26)

The latter equation has three solutions (positive, negative and zero) remembering

that h0 < −1. We are interested in the positive solution to this equation only [19].

Note that this solution does not exist in the case of the heat conduction equation,

when h0 is greater than −1 (see Chapter 2).

For p ≡ λ2 > 0, Equation (4.23) has the solutions:

vn(ξ) = sin (λnξ) (4.27)

for n ≥ 1, where λn are the solutions to the equation

tanλ = − λ

h0

. (4.28)

As in the case p < 0 we disregard the solutions to this equation corresponding to

zero and negative λ. A countable set of positive solutions to this equation (positive

eigenvalues) λn are arranged in ascending order:

0 < λ1 < λ2 < λ3 < ....
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It can be shown that functions vn(ξ), n ≥ 0 are orthogonal for 0 ≤ ξ ≤ 1 (see

Chapter 2).

The completeness of the set of functions vn(ξ) for n ≥ 0 has been tested. Namely,

we considered different functions not belonging to this set, and found that Fourier

expansions of these functions on the set of {vn(ξ)}∞n=0 coincide with the functions

themselves. If the set of functions is not complete, then a Fourier expansion of

an arbitrary function, constructed based on this set, does not coincide with this

function.

The norms of functions vn(ξ) for n ≥ 0 are given by the following expression

||vn||2 =
∫ 1

0
v2
n(ξ)dξ =

(−1)δn.0

2

[
1 +

h0

h2
0 + (−1)δn.0λ2

n

]
. (4.29)

where δn,0 is Kronecker’s delta symbol.

Remembering that functions vn(ξ) for n ≥ 0 are orthogonal and assuming that

the set of these functions is complete, we can write:

f(ξ) ≡ −ξ/(1 + h0) =
∞∑
n=0

fnvn(ξ), (4.30)

W0(ξ) =
∞∑
n=0

qnvn(ξ), (4.31)

where:

fn =
1

|| vn ||2
∫ 1

0
f(ξ)vn(ξ)dξ =


1

||v0||2λ2
0

sinhλ0 when n = 0

− 1
||vn||2λ2

n
sinλn when n ≥ 1

,

qn =
1

|| vn ||2
∫ 1

0
W0(ξ)vn(ξ)dξ.

Remembering Equations (4.22) and (4.30), Equation (4.21) can be rewritten as:

∞∑
n=0

(
R2
d(t)

dΘn(t)

dt
+ (−1)δn,0Θn(t)Dlλ

2
n

)
vn(ξ) =

∞∑
n=0

(
fnR

2
d(t)

dµ0(t)

dt

)
vn(ξ).

(4.32)

Both sides of Equation (4.32) are Fourier series with respect to functions vn(ξ).

Two Fourier series are equal if, and only if, their coefficients are equal. This implies

that:

R2
d(t)

dΘn(t)

dt
+ (−1)δn,0Θn(t)Dlλ

2
n = fnR

2
d(t)

dµ0(t)

dt
. (4.33)

Equation (4.33) is to be solved subject to the initial condition:

Θn(0) = qn + µ0(0)fn. (4.34)
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The general solution to the homogeneous equation:

R2
d(t)

dΘn(t)

dt
+ (−1)δn,0Θn(t)Dlλ

2
n = 0 (4.35)

can be presented as:

ln (Θn(t)/Θn(0)) = −(−1)δn,0Dlλ
2
n

∫ t

0

dt

R2
d(t)

. (4.36)

Assuming that Rd(t) is a linear function of t given by Equation (2.8), Solution (4.36)

can be presented in a more explicit form:

Θn(t) = Θn(0) exp

[
(−1)δn,0Dlλ

2
n

αR2
d0

(
1

1 + αt
− 1

)]
. (4.37)

One can see that the following function:

Θn (part)(t) = fn

∫ t

0

dµ0(τ)

dτ
exp

[
(−1)δn,0

Dlλ
2
n

αR2
d0

(
1

1 + αt
− 1

1 + ατ

)]
dτ (4.38)

satisfies Equation (4.33). Hence, this function can be considered as a particular

solution of Equation (4.33). Integration by parts in (4.38) allows us to present

Θn (part)(t) as:

Θn (part)(t) = fn

{
µ0(t)− µ0(0) exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]

− exp

[
(−1)δn,0

Dlλ
2
n

αRd0Rd(t)

] ∫ t

0
(−1)δn,0

µ0(τ)Dlλ
2
n

R2
d(τ)

exp

[
−(−1)δn,0

Dlλ
2
n

αRd0Rd(τ)

]
dτ

}
.

(4.39)

Remembering Equations (4.37) and (4.38), the solution to Equation (4.33) can

be presented as:

Θn(t) = Θn(0) exp

[
(−1)δn,0

Dlλ
2
n

αR2
d0

(
1

1 + αt
− 1

)]

+ fn

∫ t

0

dµ0(τ)

dτ
exp

[
(−1)δn,0

Dlλ
2
n

αR2
d0

(
1

1 + αt
− 1

1 + ατ

)]
dτ. (4.40)

Remembering (4.39) and (4.34) we can write an alternative formula for Θn(t):

Θn(t) = qn exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]
+ fnµ0(t)

− fn(−1)δn,0Dlλ
2
n

∫ t

0

µ0(τ)

R2
d(τ)

exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ. (4.41)
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Remembering that Solution (4.41) is applied to a very short time step, changes

of µ0(τ) in the integrand before the exponential term can be ignored. This allows

us to simplify (4.41) to (see Appendix 6):

Θn(t) = [qn + fnµ0(0)] exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]
+ fnµ0(t)− fnµ0(0). (4.42)

Note that Θn(t) in the form (4.40) satisfies Equation (4.33), while Θn(t) in the

form (4.42) does not satisfy it. This is related to the fact that Equation (4.33)

was derived under the assumption that Series (4.22), after being substituted into

Equation (4.21), can be differentiated term by term (derivative of the series is equal

to the series of derivatives). This assumption is valid when Θn(t) is taken in the

form (4.40), but it is not valid when Θn(t) is taken in the form (4.42), as:

µ0(t)
d2

dξ2

( ∞∑
n=0

fnvn

)
6= µ0(t)

∞∑
n=0

fn
d2vn
dξ2

(the series on the right hand side of this formula diverges). Note that Series (4.22)

satisfies Equation (4.21) regardless of whether Θn(t) is taken in the form (4.40) or

in the form (4.42).

Remembering (4.30) and (4.42), Equation (4.22) can be rewritten as:

V (t, ξ) =
∞∑
n=0

Θ̌n(t)vn(ξ)− µ0(t)

1 + h0

R

Rd(t)
+

µ0(0)

1 + h0

R

Rd(t)
, (4.43)

where

Θ̌n(t) = [qn + fnµ0(0)] exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]
. (4.44)

The final equation for mass fraction inside the droplet can be presented as:

Yli(R) =
1

R
√
Rd(t)

exp

[
− αRd0R

2

4DlRd(t)

] [ ∞∑
n=1

Θ̌n(t) sin

(
λn

R

Rd(t)

)
+

Θ̌0(t) sinh

(
λ0

R

Rd(t)

)
+

µ0(0)

1 + h0

R

Rd(t)

]
, (4.45)

where Θ̌n are given by Equations (4.44).

Having substituted (4.44) into (4.45) we can rearrange the latter equation for

the short time step to

Yli(R) =
αmεi exp

[
αRd0

4Dl

(
Rd0Rd(t)−R2

Rd(t)

)]
αm + αRd0

2

R
5/2
d0

R
5/2
d (t)

+
1

R
√
Rd(t)

exp

[
− αRd0R

2

4DlRd(t)

]
×

[ ∞∑
n=1

[qn + fnµ0(0)] exp

[
− Dlλ

2
nt

Rd0Rd(t)

]
sin

(
λn

R

Rd(t)

)
+
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[q0 + f0µ0(0)] exp

[
Dlλ

2
0t

Rd0Rd(t)

]
sinh

(
λ0

R

Rd(t)

)]
. (4.46)

When α = 0 but αm 6= 0 during the time step, Equation (4.46) can be further

simplified to

Yli(R) = εi +
1

R
√
Rd(t)

[ ∞∑
n=1

[qn + fnµ0(0)] exp

[
− Dlλ

2
nt

Rd0Rd(t)

]
sin

(
λn

R

Rd(t)

)
+

[q0 + f0µ0(0)] exp

[
Dlλ

2
0t

Rd0Rd(t)

]
sinh

(
λ0

R

Rd(t)

)]
. (4.47)

This equation is identical to Equation (13) of [38]. Note that in [38] and [50] the

norm of vn (||vn||2) is dimensional. The ratio of ||vn||2 used in [38, 50] and in this

Chapter is equal to Rd0.

Let us now relax our assumption that H0(t) ≡ h0 =const and assume that:

H0(t) = h0 + h1(t), (4.48)

where h0 =const< −1. In view of (4.48) we can rewrite the boundary condition at

ξ = 1 for Equation (4.15) in the form:

[
W
′

ξ(t, ξ) + h0W (t, ξ)
]∣∣∣
ξ=1

= µ0(t)− h1(t)W (t, 1) ≡ µ̂0(t). (4.49)

Assuming that µ̂0(t) is known, we can formally use the previously obtained

solutions (4.20) and (4.22) to present the solution to Problem (4.15)–(4.18) in the

form:

W (t, ξ) =
µ̂0(t)

1 + h0

ξ + V (t, ξ) =
∞∑
n=0

vn(ξ)qn exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]

−
∞∑
n=0

vn(ξ)(−1)δn,0fnDlλ
2
n

×
∫ t

0

µ̂0(τ)

R2
d(τ)

exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ, (4.50)

where Expression (4.41) for Θn(t) has been used.

In contrast to the previous case of H0(t) =const, Equation (4.50) does not give

us an explicit solution for W (t, ξ) since µ̂0(t) depends on W (t, 1).

Equation (4.50) can be presented in a more compact form:

W (t, ξ) = V(t, ξ)−
∫ t

0
µ̂0(τ)G(t, τ, ξ)dτ, (4.51)
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where

V(t, ξ) =
∞∑
n=0

vn(ξ)qn exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

]

G(t, τ, ξ) = −
∞∑
n=0

vn(ξ)

× Dlvn(1)

R2
d(τ) || vn ||2

exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
.

Explicit expressions for fn have been used in these formulae. Both functions V(t, ξ)

and G(t, τ, ξ) are assumed to be known.

Remembering (4.49), we can rewrite Equation (4.51) as:

W (t, ξ) = V(t, ξ)−
∫ t

0
[µ0(τ)− h1(τ)W (τ, 1)]G(t, τ, ξ)dτ. (4.52)

This is an integral representation for a solution to Problem (4.15)–(4.18) for time

dependent H0(t) given by Equation (4.48). For ξ = 1, integral representation (4.52)

reduces to the Volterra integral equation of the second kind for function W (t, 1):

W (t, 1) = V(t, 1)−
∫ t

0
[µ0(τ)− h1(τ)W (τ, 1)]G(t, τ, 1)dτ. (4.53)

One can show that:

v2
n(ξ = 1)

|| vn ||2
=

2(−1)δn,0λ2
n

(−1)δn,0λ2
n + h2

0 + h0

. (4.54)

Remembering (4.54) we obtain:

G(t, τ, 1) = − 2Dl

R2
d(τ)

∞∑
n=0

(−1)δn,0λ2
n

h2
0 + h0 + (−1)δn,0λ2

n

× exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
. (4.55)

Equation (4.53) has a unique solution, although this solution cannot be found in

an explicit form. The numerical solution can be found as described in Appendix 2.

Once the solution to this equation has been found we can substitute it into integral

representation (4.52) and find the required solution to the initial and boundary value

Problem (4.15) – (4.18). The required distribution of Yli is found to be:

Yli(t, R) =
1

R
√
Rd(t)

exp

[
− R

′
d(t)R

2

4DlRd(t)

]
W (t, R/Rd(t)). (4.56)

The numerical algorithm, in which the above solution is used for the analysis of

droplet heating and evaporation is essentially the same as described in Section 4 of
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[50]. Since the main focus of this Chapter is on the analysis of the new physical

effects produced by the droplet? moving boundary, the optimisation of the algorithm

is beyond its scope (cf. the analysis of accuracy and CPU efficiency of the related

algorithm, not taking into account the effects of the moving boundary, described in

Section 7 of [50]). Note that the speed of convergence of the algorithm turned out

to be very high. Even calculations based on 100 time steps led to almost the same

results as those based on 105 time steps. In the case of 100 time steps the CPU time

was less than 5 sec. Calculations were performed on a 3 GHz CPU, 2 GB RAM

work station.

4.4 Application to bi-component droplets

4.4.1 Effect of species diffusion

In this section, Solution (4.47) is applied to the analysis of bi-component droplet

heating and evaporation in an environment close to the one described in [38]. We

will consider only the case of an initial 50% ethanol – 50% acetone mixture and

droplets with initial diameter equal to 142.7 µm. In contrast to [38] we ignore the

interaction between droplets and the time evolution of droplet velocity and assume

that this velocity is equal to 12.71 m/s (the initial droplet velocity described in [38]).

The mixture is assumed to be ideal (the Raoult law is valid). The effects of droplets

on gas have been ignored at this stage.

To separate the effect of the moving boundary on the species diffusion equation

from a similar effect on the heat conduction equation inside droplets, described in

previous Chapters, we make a rather artificial assumption that the droplet tempe-

rature is homogeneous and fixed. We assume that this temperature is equal to 37.5

◦C (the initial temperature considered in [38]). This approach allowed us to study

the effect of the moving boundary on species diffusion alone, and not the effects of

the moving boundary on both species diffusion and heat conduction simultaneously.

In the latter case we would not be able to separate these two effects.

The plots of mass fraction of ethanol, Yeth, versus normalised radius ξ for three

moments of time (0.001 s, 0.01 s and 0.03 s), predicted by the conventional model,

and the new model, taking into account the effects of the moving boundary, are
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Figure 4.1: The plots of ethanol mass fraction Yeth versus ξ = R/Rd, as predicted by

the conventional model (dashed) and the new model, taking into account the effect

of the moving boundary (solid), for times 0.001 s, 0.01 s and 0.03 s. We consider an

initial 50% ethanol – 50% acetone mixture and droplets with initial diameter equal

to 142.7 µm.

shown in Fig. 4.1. As expected, both models predict the increase of Yeth with

increasing ξ and time. This is related to higher volatility of acetone in the ethanol/

acetone mixture. As one can see from Fig. 4.1, at times less than 0.001 s the

predictions of the conventional and the new models are practically indistinguishable.

At later times, however, the new model always predicts lower values of Yeth compared

with the conventional model. In fact the effect of the moving boundary on the

distribution of species looks stronger than a similar effect on the distribution of

temperature inside droplets as reported in Chapter 2.

The plots of Yeth at the droplet surface (Yeth(ξ = 1)) versus time, predicted by

the conventional model, and the new model, taking into account the effect of the

moving boundary, are shown in Fig. 4.2. As one can see from this figure, both

models predict the increase of Yeth(ξ = 1) with increasing time until Yeth(ξ = 1)

approaches 1 (all acetone from the droplet’s surface has evaporated). This agrees

with the results shown in Fig. 4.1. As in the case shown in Fig. 4.1, the new model

always predicts lower values of Yeth(ξ = 1) compared with the conventional model,

except at short times and the times when Yeth(ξ = 1) approaches unity.

The plots of the droplet radius Rd versus time, predicted by the conventional
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Figure 4.2: The plots of Yeth(ξ = 1) versus time, as predicted by the conventional

model (dashed) and the new model, taking into account the effect of the moving

boundary (solid).

Figure 4.3: The plots of droplet radius Rd versus time, as predicted by the conven-

tional model (dashed) and the new model, taking into account the effect of the

moving boundary (solid).
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Figure 4.4: The plots of Spalding mass transfer numberBM versus time, as predicted

by the conventional model (dashed) and the new model, taking into account the

effect of the moving boundary (solid).

model, and the new model, taking into account the effects of the moving boundary,

are shown in Fig. 4.3. As one can see from this figure, taking into account the effect

of the moving boundary leads to the acceleration of droplet evaporation compared

with the prediction of the conventional model. This effect is opposite to the one

reported earlier for the effect of the moving boundary on the thermal conductivity

inside droplets. In the latter case, the effect of the moving boundary led to slowing

down of droplet evaporation. The physical background to the effect shown in Fig.

4.3 is that the new model predicts higher mass fraction of acetone at the surface of

the droplet, as shown in Fig. 4.2, which evaporates faster than ethanol.

Note that for mono-component droplets at fixed temperature we would expect

that the d2−law should be valid. This is obviously not the case shown in Fig. 4.3.

The reason for this is that the evaporation of multi-component droplets leads to

changes in the Spalding mass transfer number BM due to the changes in vapour

composition near the droplet’s surface. The plots of BM versus time, predicted by

the conventional model, and the new model, taking into account the effects of the

moving boundary, are shown in Fig. 4.4. As can be seen from this figure, both models

predict the decrease in BM with time except at the final stage of droplet evaporation,

when the droplet becomes mono-component, consisting only of ethanol. The new

model predicts larger BM compared with the conventional model. Note that except
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at the final stage of droplet evaporation BM is approximately proportional to droplet

radius Rd. In this case, remembering that BM < 1, we can expect that dRd/dt is

close to being constant, in agreement with Fig. 4.3.

4.4.2 Combined effects of species and thermal diffusion

In this section the effect of the moving boundary on both heat transfer and species

diffusion equations is discussed. The model is based on the model from Chapter 2

and model discussed in this chapter earlier.

The experimental set-up used for validation of the model is the same as described

in [38, 49, 55]. In what follows this setup and input parameters are briefly summari-

sed. A monodisperse droplet stream was generated by a Rayleigh-type disintegrating

liquid jet. The initial fuel temperature was measured near the nozzle by a thermo-

couple. Downstream distance from the injector was converted into time with the

help of the space evolution of the droplet velocity. Droplets were injected into a

quiescent atmosphere at room temperature. Droplet temperatures were measured

using the technique described in [49, 55]. The input parameters for the models were

the initial droplet temperature (assuming that this temperature is homogeneous),

ambient gas temperature (assuming that this temperature remains constant during

the experiment), the distance parameter (ratio of the distances between droplets

and their diameters) and the droplet velocities. Our analysis is focused on pure

acetone, ethanol and various mixtures of acetone and ethanol droplets.

Substance Approximation of Udrop in m/s (t is in ms)

100% acetone 12.81− 0.316 t

100% ethanol 12.30− 0.344 t

25% ethanol + 75% acetone 12.75− 0.370 t

50% ethanol + 50% acetone 12.71− 0.448 t

75% ethanol + 25% acetone 12.28− 0.306 t

Table 4.1: Approximations of acetone, ethanol and their mixtures’ droplet velocities.

The measured time evolution of the droplet velocities in the axial direction was
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shown to be close to a linear function. The relevant approximations of the experi-

mental results are summarised in Table 4.1 (reproduced from [38]).

Substance Droplet temp. Diameter Gas temp. Dist. parameter

100% acetone 35.1◦C 143.4µm 21.5◦C 7.7

100% ethanol 38.0◦C 140.8µm 22.0◦C 7.1

25% ethanol + 75% acetone 32.5◦C 133.8µm 21.1◦C 8.7

50% ethanol + 50% acetone 37.5◦C 142.7µm 20.8◦C 7.53

75% ethanol + 25% acetone 38.6◦C 137.1µm 21.6◦C 7.53

Table 4.2: The measured initial values of droplet temperature, diameter, ambient

gas temperature and distance parameter for the same cases as in Table 4.1.

The measured initial values of droplet temperature, diameter, ambient gas tem-

perature and distance parameter C (ratio of the distance between droplets to their

diameters) for the same cases as in Table 4.1 are shown in Table 4.2. Gas tempe-

rature was constant during the measurements. The changes in C from the previous

to the current time step were taken into account based on the following equation:

Cnew = Cold
Udrop, new

Udrop, old

Rd, old

Rd, new

, (4.57)

where subscripts new and old refer to the values of variables at the previous time step

and one time step behind respectively. In this case the values of Rd, old and Rd, new

are known at the current time step.

The plots of time evolutions of the temperatures at the centre and the surface

of the droplets and the average droplet temperatures, predicted by the models not

taking into account the effect of the moving boundary and taking into account

this effect for both temperature and species diffusion for the 25% ethanol – 75%

acetone and 50% ethanol – 50% acetone mixture droplets, are shown in Fig. 4.5.

As can be seen from this figure, the effect of the moving boundary on the predicted

temperatures can be safely ignored in the analysis of experimental data described

earlier. The same conclusion can be drawn for the case of the 75% ethanol – 25%

acetone mixture droplets (figure is not shown).
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Figure 4.5: The time evolution of droplet surface, average and centre temperatures

(Ts, Tav and Tc), predicted by the one-way Solution A for the non-ideal model, taking

and not taking into account the effects of the moving boundary during individual

time steps (moving and stationary boundaries) on the solutions to both heat transfer

and species diffusion equations for the 25% ethanol – 75% acetone mixture droplets

with the values of the initial parameters, droplet velocity and gas temperature given

in Tables 4.1 and 4.2 (a); the same as (a) but for the 50% ethanol – 50% acetone

mixture droplets (b).
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Figure 4.6: The time evolution of droplet surface temperatures (Ts) and radius (Rd),

predicted by the one-way Solution A for the non-ideal model, taking and not taking

into account the effects of the moving boundary during individual time steps on

the solutions to the heat transfer equation only, species diffusion equation only and

both heat transfer and species diffusion equations for the 50% ethanol – 50% acetone

mixture droplets with the values of the initial parameters, and gas temperature given

in Table 4.2, assuming that the droplet velocity is constant and equal to 12.71 m/s.

In Fig. 4.5 a hypothetical case is shown when the 50% ethanol – 50% acetone

mixture droplets are cooled down or heated and evaporated until complete evapora-

tion takes place. Both plots for the droplet surface temperature and droplet radius

are shown. The same values as shown in Table 4.2 for the initial droplet tempera-

ture, diameter, distance parameter and gas temperature are used, but in contrast to

the case shown in Table 4.1, it is assumed that the droplet velocity remains constant

and equal to 12.71 m/s. The cases of the stationary boundary during individual time

steps, the cases when the effects of the moving boundary are taken into account for

the heat transfer and species diffusion equations separately during individual time

steps, and the case when these effects are taken into account simultaneously for heat

transfer and species diffusion are shown.

As can be seen from this figure, the plots taking into account the effects of
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the moving boundary on the heat transfer equation only, and ignoring this effect

altogether practically coincide. That means that this effect can be safely ignored

for this case. Also, the plots taking into account the effects of the moving boundary

on the solution to the species diffusion equation, and taking it into account for both

solutions to the heat transfer and species diffusion equations practically coincide, but

the difference between both these curves and the ones ignoring this effect altogether

can be clearly seen after about 0.1 s. The effect of the moving boundary is a reduction

of the predicted droplet surface temperature between about 0.1 to 0.6 s. During this

period the droplet surface temperature is below the ambient gas temperature. Hence

the reduction of the droplet surface temperature is expected to increase the heat

flux from the ambient gas to the droplets, leading to the acceleration of droplet

evaporation. This agrees with the predicted time evolution of the droplet radius,

taking and not taking into account the effect of the moving boundary, shown in Fig.

4.6.

In Fig. 4.7 the case similar to the one shown in Fig. 4.6, but for gas temperature

equal to 1000 K, is shown. In this case, droplet surface temperature increases during

the whole period of droplet heating and evaporation, in contrast to the case shown

in Fig. 4.6. As one can see from Fig. 4.7, the plots taking into account the effects

of the moving boundary on the solution to the heat transfer equation, and ignoring

this effect altogether practically coincide, as in the case shown in Fig. 4.7. Also,

similarly to the case shown in Fig. 4.6, the plots taking into account the effects of

the moving boundary on the solution to the species diffusion equations, and taking

it into account for both heat transfer and species diffusion equations practically

coincide, but the difference between both these curves and the ones ignoring this

effect altogether can be clearly seen after about 5 ms. This difference between the

plots is much more visible than in the case shown in Fig. 4.6. As in the case shown

in Fig. 4.6, the effect of the moving boundary is to reduce the predicted droplet

surface temperature leading to the increase of the heat flux from the ambient gas to

the droplets and acceleration of droplet evaporation. This agrees with the predicted

time evolution of droplet radius, taking and not taking into account the effect of the

moving boundary, shown in Fig. 4.7.

The plots of time evolution of the surface mass fraction of ethanol Yl,s,eth for the
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Figure 4.7: The same as Fig. 4.6 but for the gas temperature equal to 1000 K.

same case as shown in Fig. 4.7, are shown in Fig. 4.8. Similarly to the case shown

in Fig. 4.7, the main effect of the moving boundary on the solution to the species

diffusion equation is its influence on the values of Yl,s,eth. This effect leads to visible

reductions of the values of Yl,s,eth until the complete evaporation of the droplet takes

place.

4.5 Conclusions of Chapter 4

Two new solutions to the equation, describing the diffusion of species during multi-

component droplet evaporation, are suggested. The first solution is the explicit

analytical solution to this equation, while the second one reduces the solution of

the differential transient species diffusion equation to the solution of the Volterra

integral equation of the second kind. Both solutions take into account the effect of

the reduction of the droplet radius due to evaporation, assuming that this radius is

a linear function of time. These solutions can be considered as the generalisations

of the solutions earlier reported in [38, 50]. The analytical solution is presented in

the case when parameter h0 can be assumed to be constant (less than −1) during

the time step. These solutions are complementary to the ones suggested earlier in

75



Figure 4.8: The same as Fig. 4.7 but for the mass fraction of ethanol at the surface

of the droplet.

Chapter 2, which took into account the effect of the moving boundary due to droplet

evaporation on the distribution of temperature inside the droplet.

The analytical solution has been incorporated into a zero dimensional CFD code

and applied to the analysis of bi-component droplet heating and evaporation. The

case of initial 50% ethanol – 50% acetone mixture and droplets with initial diameter

equal to 142.7 µm, as in our earlier paper [38], has been considered. Effects of

droplets on gas have been ignored at this stage and droplet velocity has been assumed

to be constant and equal to 12.71 m/s. To separate the effect of the moving boundary

on the species diffusion equation from similar effects on the heat conduction equation

inside droplets, described in previous two Chapters, a rather artificial assumption

that the droplet temperature is homogeneous and fixed has been made.

It has been pointed out that the moving boundary slows down the increase in

the mass fraction of ethanol (the less volatile substance in the mixture) during the

evaporation process and leads to the acceleration of droplet evaporation.

It is pointed out that for the conditions of the experiment described briefly earlier,

the predictions of the models, taking and not taking into account the effects of the

moving boundary during the time step on the solutions to the heat transfer and
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species diffusion equations, are very close. The deviation between the predictions

of these models can be ignored in this case. At the same time, the difference in the

predictions of these models needs to be taken into account when the whole period of

droplet evaporation up to the complete evaporation of droplets is considered. The

effect of the moving boundary is shown to be much stronger for the solution to

the species diffusion equation than for the solution to the heat conduction equation

inside droplets.
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Chapter 5

Transient heating of a

semitransparent spherical body

immersed into a gas with

inhomogeneous temperature

distribution

5.1 Introduction of Chapter 5

The main objective of this Chapter is to generalise the model described in [52] to the

case when the initial gas temperature is not homogeneous in the vicinity of droplets.

This new generalised model can be applied to any problem of body heating/cooling

when this body is immersed into an ambient gas with temperature varying with

time (but constant during the time step).

Basic equations and approximations of the model are described in Section 5.2.

The new analytical solution to the heat conduction equation in the body and sur-

rounding gas is presented in Section 5.3. This solution is analysed in Section 5.4,

and the main results of the Chapter are summarised in Section 5.5.
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Figure 5.1: A schematic presentation of a spherical body of radius Rb immersed in

the center of a gaseous sphere of radius Rg.

5.2 Basic equations and assumptions

As in [52], let us assume that a spherical body of radius Rb and initial temperature

Tb0(R) is immersed in the center of a gaseous sphere of radius Rg at temperature

Tg0(R), as schematically shown in Fig. 5.1. The outer surface temperature of the

gaseous sphere remains constant and equal to Tg0(Rg). Rg is greater than Rb but

finite.

The variation of the temperatures in the gas-body domain is described by the

heat conduction equation in the form [105, 106]:

∂T

∂t
= κ

(
∂2T

∂R2
+

2

R

∂T

∂R

)
+ P (t, R), (5.1)

where

κ =

 κb = kb/(cbρb) when R ≤ Rb

κg = kg/(cpgρg) when Rb < R ≤ Rg,
(5.2)

T (Rg) = Tg0(Rg) =const.

Equation (5.1) is identical to Equation (2.1). In contrast to Equation (2.1),

however, κ in Equation (5.1) is not constant and the latter Equation refers to both
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liquid and gas. Equation (5.1) is the same as used in [52] except that Tg0 is not

constant but depends on R in the range Rb < R ≤ Rg. The model for the radiation

term P (t, R) is the same as used in [52].

As in [52], Equation (5.1) needs to be solved subject to initial and boundary

conditions:

T |t=0 =

 Tb0(R) when R ≤ Rb

Tg0(R) when Rb < R ≤ Rg,
(5.3)

T |R=R−
b

= T |R=R+
b
, kb

∂T

∂R

∣∣∣∣∣
R=R−

b

= kg
∂T

∂R

∣∣∣∣∣
R=R+

b

, T |R=Rg
= Tg0(Rg). (5.4)

The physical meaning of the value of Rg −Rb can be interpreted in terms of the

so called ‘film’ theory [44]. The key concept of this theory is thermal film thickness

δT , the expression for which is derived from the requirement that the rate of a

purely molecular transport by thermal conduction through the film must be equal

to the actual intensity of the convective heat transfer between the body surface and

the external flow. For the case of heat conduction at the surface of a sphere this

requirement can be written as [131]:

q
′′

s =
kg∆T

Rb −
R2

b

Rb+δT0

= h∆T, (5.5)

where q
′′
s = |q̇s|/(4πR2

b) is the value of the heat flux at the surface of the droplet,

∆T = Tg−Ts, index 0 here indicates that the effects of the Stefan flow are not taken

into account (no evaporation), h is the convection heat transfer coefficient. From

Equation (5.5) it follows that

δT0 =
2Rb

Nu0 − 2
, (5.6)

where Nu0 is the Nusselt number of the non-evaporating body.

The value of Rg − Rb in our model is identified with δT0. Following [44], Nu0 is

estimated as

Nu0 = 1 + (1 + RePr)1/3 max
[
1, Re0.077

]
, (5.7)

where Re and Pr are Reynolds and Prandtl numbers respectively.

If we impose an additional requirement that the initial heat rate inside the ‘film’

does not depend on R, we get the following equation for Tg0(R)

4πkg (Tg0(Rg)− Tb0)
1
Rb
− 1

Rg

=
4πkg (Tg0(R)− Tb0)

1
Rb
− 1

R

. (5.8)
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The introduction of non-zero Re affects our earlier assumption about the sphe-

rical symmetry of the problem and h = kg/Rb. This can be overcome if we replace

kg by

kg, eff = kgNu0/2

to satisfy Equation (5.5). If the body is liquid then kb would need to be replaced by

the effective liquid thermal conductivity, following the effective thermal conductivity

model [44]. These effects are not considered in this Chapter.

Note that the ‘film theory’ based on Equations (5.5)-(5.8) was developed under

the assumption that droplet heating is quasi-steady. This obviously contradicts

the unsteady formulation of the problem (5.1)-(5.4). This contradiction, however,

seems to be unavoidable, as the value of Rg −Rb in our model needs to be imposed

‘externally’ as an input parameter. In our previous paper [52], we considered a range

of values of Rg −Rb without any attempt to link them with the underlying physics

of the phenomenon.

5.3 The analytical solution

The solution to Equation (5.1) subject to initial and boundary conditions (5.3)-(5.4)

in the limiting case of Rg → ∞, Tb0 = const, Tg0(R) = const and in the absence

of radiation was reported in [67]. In [52] an alternative form of this solution was

found, based on the assumption that Rg is finite, Tb0 depends on R and taking

into account the contribution of thermal radiation. In this Chapter the model is

further generalised to take into account the dependence of Tg0 on R in the range

Rb < R ≤ Rg. This leads us to the following expression for T (R, t) (see Appendix

7):

T (R, t) = Tg0(Rg)+
1

R

∞∑
n=1

[
exp

(
−λ2

nt
) 1

||vn||2

(∫ Rb

0
(−(Tg0(Rg)− Tb0(R))Rvn(R)cbρbdR

+
∫ Rg

Rb

(−(Tg0(Rg)− Tg0(R))Rvn(R)cpgρgdR

)
+
∫ t

0
exp

(
−λ2

n (t− τ)
)
pn(τ)dτ

]
vn(R),

(5.9)

where

vn(R) =


sin(λnabR)
sin(λnabRb)

when R < Rb

sin(λnag(R−Rg))
sin(λnag(Rb−Rg))

when Rb ≤ R ≤ Rg,
(5.10)
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||vn||2 =
cbρbRb

2 sin2(λnabRb)
+

cpgρg(Rg −Rb)

2 sin2(λnag(Rb −Rg))
− kb − kg

2Rbλ2
n

,

pn(t) =
cbρb
||vn||2

∫ Rb

0
RP (t, R)vn(R)dR.

A countable set of positive eigenvalues λn is found from the solution to the equation:

√
kbcbρb cot(λabRb)−

√
kgcpgρg cot(λag(Rb −Rg)) =

kb − kg
Rbλ

. (5.11)

These are arranged in ascending order 0 < λ1 < λ2 < .... . ab =
√

cbρb
kb

, ag =
√

cpgρg
kg

.

Having introduced new dimensionless variables:

T̃ =
T (R, t)

Tg0(Rg)
, T̃b =

Tb0(R)

Tg0(Rg)
, T̃g =

Tg0(R)

Tg0(Rg)
, r =

R

Rb

, rg =
Rg

Rb

,

and ignoring the contribution of thermal radiation, Equation (5.9) can be simplified

to

T̃ = 1 +
Rb

r

∞∑
n=1

[
exp

(
−λ2

nt
) 1

||vn||2
(∫ 1

0
(−(1− T̃b)rvn(Rbr)cbρbdr

+
∫ rg

1
(−(1− T̃g)rvn(Rbr)cpgρgdr

)]
vn(Rbr), (5.12)

If Tg0(R) = Tg0(Rg) =const and Tb0 does not depend on R then Equation (5.9)

can be simplified to

T (R, t) = Tg0 +
1

R

∞∑
n=1

[
exp

(
−λ2

nt
) (Tg0 − Tb0)

√
kbcbρb

λn||vn||2
[
Rb cot(λnabRb)−

1

λnab

]

+
∫ t

0
exp

(
−λ2

n (t− τ)
)
pn(τ)dτ

]
vn(R). (5.13)

This solution was studied in detail in the previous paper [52].

5.4 Analysis

Let us consider typical values of parameters for the case when Diesel fuel droplets

with an initial temperature of 300 K are injected into a gas at temperature 900 K

and pressure 30 atm (situation typical for Diesel engines [42]):

ρb = 600 kg/m3 kb = 0.145 W/(mK) cb = 2830 J/(kgK)

ρg = 23.8 kg/m3 kg = 0.061 W/(mK) cpg = 1120 J/(kgK).
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This leads us to the following estimates of thermal diffusivities of the body and gas

as defined by Equation (5.2):

κb = 8.54× 10−8 m2/s; κg = 2.29× 10−6 m2/s.

Note that we took gas temperature slightly higher than the one used in [52],

where it was assumed that Tg0(Rg) = 800 K. The values of transport coefficients for

gas were taken to be the same as in [42, 52]. The difference of the values of these

coefficients for these two temperatures were ignored as in [52].

We assume that the droplets can be treated as a body the temperature of which

is initially homogeneous, while Tg0(Rg) = 900 K and Rb = 10 µm. Pr is assumed to

be equal to 0.7 and two values of Re are considered: 1 and 5. Remembering (5.6),

this leads to the following values of Rg:

Rg1 = 3.301Rb and Rg2 = 11.337Rb.

Two cases of the initial distribution of gas temperature in the range Rb < R ≤ Rg

are considered. Firstly, we assume that Tg0(R) satisfies Equation (5.8), which leads

to the following expression:

Tg0(R) = Tb0 + [Tg0(Rg)− Tb0]
1
Rb
− 1

R
1
Rb
− 1

Rg

. (5.14)

Secondly we assume that

Tg0(R) = Tg0(Rg). (5.15)

The latter case is identical to the one considered in [52].

The analysis of the effects of thermal radiation would lead to the results identical

to the ones reported in [52]. This will not be considered in this work.

The analysis will be focused on the dimensionless time (Fourier number), distance

and temperature defined as:

Fo = tκg/R
2
b , r = R/Rb, T̂(s) = (Tg0(Rg)− T(s)(R, t))/(Tg0(Rg)− Tb0).

The calculations were performed using the package Wolfram Mathematica v 6.0

on a one 3.0 GHz Kernel. 100 terms of the series were taken.

Plots of T̂ versus r for Rg = 3.301Rb and four Fo are shown in Fig. 5.2. The plots

are shown for both initial distributions of gas temperature in Rb < R ≤ Rg, defined
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Figure 5.2: The plots of T̂ ≡ (Tg0(Rg)− T (R, t))/(Tg0(Rg)− Tb0) versus r = R/Rb

for rg ≡ Rg/Rb = 3.301 and four Fo (indicated near the curves). Solid curves refer

to the initial distribution (5.15), while dashed curves refer to the initial distribution

(5.14). The thickness of the curves is inversely proportionate to Fo.

by Expressions (5.14) and (5.15). As follows from this figure, for Fo = 0.1 most

of the interior of the body is not affected by high gas temperature for both initial

distributions of Tg0(R), but the body temperatures near the surface are affected

stronger by gas for distribution (5.15), compared with distribution (5.14). The

difference in gas temperatures (r > 1) for these initial distributions of Tg0(R) is

clearly visible as expected. For Fo = 1 and Fo = 10 a more rapid heating of

the body for distribution (5.15), compared with distribution (5.14), is seen much

more clearly compared with the case Fo = 0.1. Gas temperatures, predicted by

both distributions, in these cases are much closer compared with the case Fo =

0.1. For Fo = 100, for both initial temperature distributions, both body and gas

temperatures become very close to Tg0(Rg).

The plots, similar to those shown in Fig. 5.2 but for Rg = 11.337Rb, are presented

in Fig. 5.3. Comparing Figs. 5.2 and 5.3 one can see that the trends of the curves

in both figures are essentially the same, although the difference in the body heat-up

for Fo = 1 and Fo = 10, predicted for distributions (5.14) and (5.15), is more clearly

visible in Fig. 5.3 than in Fig. 5.2.

84



Figure 5.3: The same as Fig. 5.2 but for rg = 11.337.

The plots of T̂s versus Fo for Rg = 3.301Rb, Rg = 11.337Rb and both initial

distributions of Tg0(R) are shown in Fig. 5.4. As follows from this figure, the body

surface is always heated quicker for distribution (5.15) compared with distribution

(5.14) as expected. Also, the body is heated quicker for Rg = 3.301Rb than for

Rg = 11.337Rb. All these results are consistent with those shown in Figs. 5.2 and

5.3.

Ignoring the effects of the body movement, we can estimate the heat flux arriving

at its surface as

q
′′

= kg
∂T

∂R

∣∣∣∣∣
R=Rb+0

= kb
∂T

∂R

∣∣∣∣∣
R=Rb−0

. (5.16)

On the other hand, from the Newton’s law follows that

q
′′

N = h (Tg0(Rg)− Ts) , (5.17)

where h = kg
Rb

for a spherically symmetric process. In the steady state limit, q
′′

= q
′′
N .

However. in the general transient case, they are linked by the equation

q
′′

= χq
′′

N , (5.18)

where

χ =
kg

∂T
∂R

∣∣∣
R=Rb+0

kg
Rb

(Tg0(Rg)− Ts)
=
Rb

∂T
∂R

∣∣∣
R=Rb+0

Tg0(Rg)− Ts
. (5.19)
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Figure 5.4: The plots of T̂s ≡ (Tg0(Rg) − Ts(R, t))/(Tg0(Rg) − Tb0) versus Fo for

rg = 3.301 and distribution (5.15) (solid), rg = 11.337 and distribution (5.15)

(dashed-dotted), rg = 3.301 and distribution (5.14) (thick dashed), rg = 11.337

and distribution (5.14) (thin dashed).

If the Newton’s law is valid then χ = 1. As shown in [52] for the special case of

a body immersed into a homogeneous gas, this is not valid in the general transient

case.

The plots of χ versus Fo for various rg ≡ Rg/Rb, and both initial distributions

of Tg0(R) are shown in Fig. 5.5. The solid plots referring to distribution (5.15)

are identical to those presented in [52]. The solid plot referring to Rg = 50Rb is

practically indistinguishable from the one which follows from the analysis by Cooper

[67], obtained in the limit Rg = ∞ using the approach totally different from ours.

This coincidence confirms the validity of both approaches.

The dashed curves, obtained for the initial distribution (5.15), coincide with the

solid curves referring to distribution (5.14) in the limit of large Fo. For small Fo

the deviations between the curves corresponding to distributions (5.14) and (5.15) is

clearly seen. For distribution (5.15), χ rapidly increases with decreasing Fo (χ→∞

when Fo→ 0). For distribution (5.14), χ approaches the finite values when Fo→ 0,

being always less than predicted for distribution (5.15). The values of χ in the limit
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Figure 5.5: The plots of χ versus Fo for four rg (indicated near the curves). Solid

curves refer to the initial distribution (5.15). while dashed curves refer to the initial

distribution (5.14).

Fo→ 0 can be estimated analytically from (5.15) and (5.18) as

χ =
R̃g

R̃g − 1
. (5.20)

Note that the values of χ for Fo = 0.1, can differ by up to about 8% from those

predicted by (5.20) (although the values of temperature were calculated with errors

less than about 0.5%). This is related to very slow convergence of the corresponding

series in (5.9) for the derivative of the temperature in the vicinity of the droplet

surface (up to 3000 terms in this series were taken).

5.5 Conclusions of Chapter 5

The problem of heating of a body immersed into gas with inhomogeneous tempera-

ture distribution is solved analytically assuming that at a certain distance Rg − Rb

from the body gas temperature remains constant. This problem is the generalisation

of the problem solved earlier when gas, into which the body is immersed, is assumed

to be initially homogeneous. This solution is applied to the case when the distribu-

tion of gas temperature is chosen such that heat flux in gas initially does not depend
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on the distance from the body surface, if this distance is less than Rg − Rb. The

solution is applied to modelling body heating in conditions close to those observed

in Diesel engines.

It is pointed out that inhomogeneous gas temperature distribution leads to slo-

wing down of body heating compared with the case when the body is immersed

into a homogeneous gas. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature.

The study of the correction of the convective heat transfer coefficient for the case

of body immersion in gas with homogeneous temperature distribution confirmed the

results earlier reported in [52]. For small Fo, this correction does not depend on the

size of the gas domain, and reaches about 2.8 at Fo= 0.1. For Fo> 1 this correction

becomes sensitive to the size of the domain. For large domains it has been shown to

be the same as follows from the earlier model suggested in [67] for an infinitely large

domain occupied by the gas. The values of this correction to Newton’s law vary from

about 0.1 (large domain occupied by gas and Fo= 500) to 2.8 at Fo= 0.1. In the

case of body immersion into an inhomogeneous gas, for large times this correction

is essentially the same as predicted by the model described in [52]. For short times,

this correction approaches finite values, well below those predicted in [52]. For large

gas domains these values are close to 1. These results essentially confirm the main

conclusion of [52] that ignoring these corrections is expected to lead to unacceptably

large errors in computations.
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Chapter 6

Conclusions

New solutions to the heat conduction equation, describing transient heating of an

evaporating droplet, are suggested. These solutions take into account the effect of

the reduction of the droplet radius due to evaporation, assuming that this radius is

a linear function of time. The latter assumption does not allow us to apply these

solutions to describe the whole process, from the start of evaporation, until the

moment in time when the droplet completely evaporates. However, these solutions

are expected to be used to describe droplet heating and evaporation over a small time

step when other parameters, except droplet radius and temperature, can be assumed

constant. In this case they can be considered as generalisations of the approach

currently used in all research and commercial computational fluid dynamics (CFD)

codes known to us (KIVA, FLUENT, PHOENICS etc.), in which it is assumed that

droplet radius is constant during the time step.

The analytical solution has been incorporated into the zero dimensional CFD

code and applied to the analysis of Diesel fuel droplet heating and evaporation in

typical engine conditions. Effects of droplets on gas have been ignored at this stage.

The results have been compared with those which follow from the conventional

(traditional) approach to modelling droplet heating and evaporation, based on the

assumption that the droplet radius is constant over the time step (but changes from

one time step to another). It has been pointed out that the new approach leads to

the prediction of lower droplet temperatures and longer evaporation times than the

traditional method.

Larger time steps can be used in the case of the new approach compared with
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the conventional one to achieve the same accuracy of calculation.

The boundary immobilization method was considered, in tandem with the Keller

box finite-difference scheme, for the accurate numerical solution of the transient heat

conduction equation inside droplets. This numerical solution was found to agree well

with that obtained based on the above mentioned approach. This suggests that both

approaches are likely to be correct.

Two new solutions to the heat conduction equation are suggested, assuming

that the time evolution of droplet radius is known. The initial droplet temperature

is assumed to be constant or allowed to change with the distance from the droplet

centre. The results turned out to be the simplest in the first case and the main focus

of our analysis has been upon these. Since Rd(t) depends on the time evolution of

the droplet temperature, an iterative process is required. Firstly, the time evolution

of Rd(t) is obtained using the conventional approach, when it remains constant

during the time step, but changes from one time step to another. The droplet

surface temperature in this case is obtained from the analytical solution to the heat

conduction equation inside the droplet. It is assumed that this droplet is heated by

convection from the ambient gas, and its radius remains constant during the time

step. Then these values of Rd(t) are used in the new solutions to obtain updated

values of time evolution of the distribution of temperatures inside the droplet and on

its surface. These new values of droplet temperature are used to update the function

Rd(t). This process continues until convergence is achieved, which typically takes

place after about 15 iterations. The results of the calculations of droplet surface

temperature, using this approach, are compared with the results obtained using the

previously suggested approach when the droplet radius was assumed to be a linear

function of time during individual time steps for typical Diesel engine-like conditions.

For sufficiently small time steps the time evolutions of droplet surface temperatures

and radii, predicted by both approaches coincide as expected. Similarly to the case

when droplet radius is assumed to be a linear function of time during the time step,

the new solution predicts lower droplet temperatures and slower evaporation when

the effects of the reduction of Rd are taken into account.

It is shown that in the case of constant droplet initial temperature, models both

taking and not taking into account the changes in initial droplet temperature with
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the distance from the droplet centre, predict the same results. This suggests that

both models are likely to be correct. It is shown that the temperatures predicted

by the models based on the assumption of constant initial droplet temperature, and

the one taking into account the increase in this temperature with the distance from

the droplet centre, tend to converge with time.

Two new solutions to the equation, describing the diffusion of species during

multi-component droplet evaporation, are suggested. Both solutions take into ac-

count the effect of the reduction of the droplet radius due to evaporation, assuming

that this radius is a linear function of time. The first solution is the explicit analytical

solution to this equation, while the second one reduces the solution of the differential

transient species diffusion equation to the solution of the Volterra integral equation

of the second kind. These solutions can be considered as the generalisations of the

solutions earlier reported in [38, 50]. These solutions are complementary to the ones

suggested earlier, which took into account the effect of the moving boundary due to

droplet evaporation on the distribution of temperature inside the droplet.

The analytical solution has been incorporated into a zero dimensional CFD code

and applied to the analysis of bi-component droplet heating and evaporation. To

separate the effect of the moving boundary on the species diffusion equation from

similar effects on the heat conduction equation inside droplets, described in previous

two chapters, a rather artificial assumption that the droplet temperature is homoge-

neous and fixed has been made. It has been pointed out that the moving boundary

slows down the increase in the mass fraction of ethanol (the less volatile substance in

the mixture) during the evaporation process and leads to the acceleration of droplet

evaporation.

It is pointed out that for the conditions of the experiment described in [38],

the predictions of the models, taking and not taking into account the effects of the

moving boundary during the time step on the solutions to the heat transfer and

species diffusion equations, are very close. The deviation between the predictions

of these models can be ignored in this case. At the same time, the difference in the

predictions of these models needs to be taken into account when the whole period of

droplet evaporation up to the complete evaporation of droplets is considered. The

effect of the moving boundary is shown to be much stronger for the solution to
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the species diffusion equation than for the solution to the heat conduction equation

inside droplets.

The problem of heating of a body immersed into gas with inhomogeneous tempe-

rature distribution is solved analytically assuming that at a certain distance Rg−Rb

from the body gas temperature remains constant. This problem is the generalisation

of the problem solved earlier when gas, into which the body is immersed, is assumed

to be initially homogeneous. This solution is applied to the case when the distribu-

tion of gas temperature is chosen such that heat flux in gas initially does not depend

on the distance from the body surface, if this distance is less than Rg − Rb. The

solution is applied to modelling body heating in conditions close to those observed

in Diesel engines.

It is pointed out that inhomogeneous gas temperature distribution leads to slo-

wing down of body heating compared with the case when the body is immersed

into a homogeneous gas. In the long time limit, the distribution of temperature

in the body and gas practically does not depend on the initial distribution of gas

temperature. The study of the correction of the convective heat transfer coefficient

for the case of body immersion in gas with homogeneous temperature distribution

confirmed the results earlier reported in [52]. For small Fo, this correction does not

depend on the size of the gas domain, and reaches about 2.8 at Fo= 0.1. For Fo> 1

this correction becomes sensitive to the size of the domain. For large domains it has

been shown to be the same as follows from the earlier model suggested in [67] for an

infinitely large domain occupied by the gas. The values of this correction to New-

ton’s law vary from about 0.1 (large domain occupied by gas and Fo= 500) to 2.8 at

Fo= 0.1. In the case of body immersion into an inhomogeneous gas, for large times

this correction is essentially the same as predicted by the model described in [52].

For short times, this correction approaches finite values, well below those predicted

in [52]. For large gas domains these values are close to 1. These results essentially

confirm the main conclusion of [52] that ignoring these corrections is expected to

lead to unacceptably large errors in computations.
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Appendices

Appendix 1

Convergence of the Series in G1(t, τ, ξ) and Estimate of G1(t, τ, ξ)

at t− τ → 0

Let us assume that

0 ≤ τ ≤ t < te = −1/α

and introduce the new function:

f(t, τ) ≡ − 1

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)
=

t− τ
Rd(t)Rd(τ)

. (A11)

In the case of a time step, te needs to be replaced by ∆t. As it was done earlier, to

simplify the notation it is assumed that t0 (the start of the time step) is equal to

zero. This comment and assumption apply to both Appendices 1 and 2. Note that

f(t, τ) ≥ t− τ
R2
d0

(A12)

since α < 0 and Rd(t) ≤ Rd0.

It follows from (2.31) and the estimate λn > n for n > 1 that || vn ||2> 1/4 for

n > 1. Therefore:

|| vn ||2≥ c0, n ≥ 1, (A13)

where c0 = min {|| v1 ||2, 1/4} is a positive constant.

Condition (A12) allows us to make the following estimate:

exp
[
−κλ2

nf(t, τ)
]
≤ exp

[
−κn2 t− τ

R2
d0

]
, n > 1, (A14)

where we took into account that λn > n for n > 1 (see Equation (17) in [15]).

Using (A14) one can conclude that the series in G1(t, τ, ξ) converges absolutely and
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uniformly to the continuous function for (t− τ, ξ) ∈ [δ,−1/α)× [0, 1] for any small

δ > 0 since:

exp

[
−κn2 t− τ

R2
d0

]
≤ exp

[
−κn2 δ

R2
d0

]
, |sinλnξ| ≤ 1. (A15)

Indeed, each term with n > 1 in the series inG1(t, τ, ξ) for (t−τ, ξ) ∈ [δ,−1/α)×[0, 1]

can be majorized by the corresponding term of the convergent number series

κc−1
0 exp

(
−κn2 δ

R2
d0

)
.

Now we estimate G1(t, τ, ξ) for small t − τ > 0. Inequalities (A13) and (A14)

allow us to write:

|G1(t, τ, ξ)| ≤ c−1
0 κ

{
1 +

∞∑
n=2

exp
[
−κn2f(t, τ)

]}

≤ c−1
0 κ

{
1 +

∞∑
n=2

exp
[
−κn2(t− τ)/R2

d0

]}
≡ G̃(t− τ). (A16)

The sum
∑∞
n=2 exp [−κn2(t− τ)/R2

d0] can be considered as a sum of areas of

polygons of unit width placed under the curve exp [−κy2(t− τ)/R2
d0]. This sum is

less than the area under this curve. Hence,

∞∑
n=2

exp
[
−κn2(t− τ)/R2

d0

]
<
∫ ∞

1
exp

[
−κy2(t− τ)/R2

d0

]
dy

<
∫ ∞

0
exp

[
−κy2(t− τ)/R2

d0

]
dy =

Rd0√
κ(t− τ)

∫ ∞
0

exp
[
−z2

]
dz

=
Rd0

√
π

2
√
κ(t− τ)

(A17)

Having substituted (A17) into (A16) we obtain:

|G1(t, τ, ξ)| ≤ G̃(t− τ) < c0κ

1 +
Rd0

√
π

2
√
κ(t− τ)

 < c̃/
√
t− τ , (A18)

t− τ ∈ (0, t00],

for any small fixed t00 ∈ (0,−1/α). The new constant c̃ depends on t00. Inequality

(A18) holds uniformly for ξ ∈ [0, 1].
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Appendix 2

Numerical solution of Equation (2.51)

Let ψ(t) ≡ W (t, 1) and rewrite Equation (2.51) as:

ψ(t) = V(t, 1)−
∫ t

0
[µ0(τ)− h1(τ)ψ(τ)]G(t, τ, 1)dτ. (A21)

We look for the solution of Equation (A21) for t ∈ [0, t̂], where t̂ is a constant,

t̂ < te. Let ∆t = t̂/N and tn = n∆t, where N is the total number of time steps,

n = 0, 1, .....N is the number of the current time step. Note that t0 = 0 and tN = t̂.

Discretisation of Equation (A21) gives:

ψ(tn) = V(tn, 1)−
n∑
j=1

∫ tj

tj−1

[µ0(τ)− h1(τ)ψ(τ)]G(tn, τ, 1)dτ, (A22)

where n = 1, .....N . Note that ψ(t0) = ψ(0) = V(0, 1) = W0(1) is a known constant.

The first (n− 1) integrals in this sum can be approximated as:∫ tj

tj−1

[µ0(τ)− h1(τ)ψ(τ)]G(tn, τ, 1)dτ

≈ {µ0(τj)− h1(τj) [ψ(tj) + ψ(tj−1)] /2}G(tn, τj, 1)∆t, (A23)

where j = 1, 2, ...., n − 1, τj = tj − 1
2
∆t. Approximation (A23) is valid since all

functions in the integrand are continuous and we look for the solution in the class

of continuous functions.

In Approximation (A23) the known functions are taken at τ = τj (middle of the

range [tj−1, tj]), while the unknown functions are taken as the average of the values

at the end points tj−1 and tj.

The last term in the sum in Equation (A22) requires special investigation since

the kernel G(tn, τ, 1) in the integrand becomes singular when τ → tn − 0 (see Esti-

mate (A18)). All other functions in this integrand, including the unknown function

ψ(t), are assumed continuous. Hence, we can write:∫ tn

tn−1

[µ0(τ)− h1(τ)ψ(τ)]G(tn, τ, 1)dτ

≈
{
µ0(τn)− h1(τn)

ψ(tn) + ψ(tn−1)

2

}∫ tn

tn−1

G(tn, τ, 1)dτ. (A24)

In view of Series (2.53) we can write:∫ tn

tn−1

G(tn, τ, 1)dτ
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= −2κ
∞∑
m=1

λ2
m

h2
0 + h0 + λ2

m

∫ tn

tn−1

1

R2
d(τ)

exp

[
κλ2

m

αRd0

(
1

Rd(tn)
− 1

Rd(τ)

)]
dτ

= −2κ
∞∑
m=1

λ2
m

h2
0 + h0 + λ2

m

1

κλ2
m

exp

[
κλ2

m

αRd0

(
1

Rd(tn)
− 1

Rd(τ)

)]∣∣∣∣∣
τ=tn

τ=tn−1

= −2κ
∞∑
m=1

λ2
m

h2
0 + h0 + λ2

m

1

κλ2
m

{
1− exp

[
κλ2

m

αRd0

(
1

Rd(tn)
− 1

Rd(tn−1)

)]}

= −2
∞∑
m=1

1

h2
0 + h0 + λ2

m

{
1− exp

[
−κλ2

m∆t

Rd(tn)Rd(tn−1)

]}

= − 1

1 + h0

+ 2
∞∑
m=1

1

h2
0 + h0 + λ2

m

exp

[
−κλ2

m∆t

Rd(tn)Rd(tn−1)

]
≡ gn. (A25)

If h0 = 0 then λm = π(m− (1/2)) in series (A25). The combination of Formulae

(A23) – (A25) allows us to present the discretised form of Equation (A21) (Equation

(A22)) as follows:

ψ(tn) = V(tn, 1)− {µ0(τn)− h1(τn) [ψ(tn) + ψ(tn−1)] /2} gn

−
n−1∑
j=1

{µ0(τj)− h1(τj) [ψ(tj) + ψ(tj−1)] /2}G(tn, τj, 1)∆t, (A26)

where n = 1, 2, ...., N , and gn is given by Series (A25).

Equation (A26) can be rearranged to the form particularly convenient for the

numerical analysis:

ψ(tn) =
1

1− 0.5h1(τn)gn

{
V(tn, 1)−

[
µ0(τn)− h1(τn)ψ(tn−1)

2

]
gn

−
n−1∑
j=1

{µ0(τj)− h1(τj) [ψ(tj) + ψ(tj−1)] /2}G(tn, τj, 1)∆t

 . (A27)

For n = 1 the sum in Formula (A27) is equal to zero and ψ(t0) is a known

constant (see above). This allows us to calculate ψ(t1) explicitly using Formula

(A27). Once ψ(t1) has been calculated we can use Formula (A27) for calculation of

ψ(t2) etc. At the nth step, Formula (A27) is used for calculation of ψ(tn) using the

values of ψ(t0), ψ(t1), ... ψ(tn−1) calculated at the previous steps. At this step all

terms in the sum
∑n−1
j=1 are already known.

Once we have obtained the numerical solution to the integral equation (2.51)

we are in a position to calculate numerically function W (t, ξ) using its integral

representation (2.49), where:

µ̂0(t) = µ0(t)− h1(t)ψ(t).
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Using the same discretisation by t and τ as above, we can present the discretised

form of this representation as:

W (t̂, ξ) = V(t̂, ξ)−
N∑
j=1

∫ tj

tj−1

µ̂0(τ)G(t̂, τ, ξ)dτ

= V(t̂, ξ)−
N−1∑
j=1

µ̂0(tj−1) + µ̂0(tj)

2
G(t̂, τj, ξ)∆t−

µ̂0(tN−1) + µ̂0(tN)

2

×
∫ tN

tN−1

G(tN , τ, ξ)dτ. (A29)

Note that tN = t̂. If N = 1 then the sum in Equation (A29) is equal to zero. The

last integral in Equation (A29) is improper and needs to be calculated separately.

Remembering the definition of G(t, τ, ξ), and almost repeating the derivation of

Equation (A25), we can write:

∫ tN

tN−1

G(tN , τ, ξ)dτ = −2
∞∑
m=1

h2
0 + λ2

m

h2
0 + h0 + λ2

m

sinλm sinλmξ

λ2
m

×
{

1− exp

[
−κλ2

m∆t

Rd(tN)Rd(tN−1)

]}

= − ξ

1 + h0

+ 2
∞∑
m=1

h2
0 + λ2

m

h2
0 + h0 + λ2

m

sinλm sinλmξ

λ2
m

exp

[
−κλ2

m∆t

Rd(tN)Rd(tN−1)

]
.

Having substituted the latter equation into (A29), and remembering the defini-

tion of µ̂0(tj), we obtain the required value of W (t̂, ξ).

Appendix 3

Numerical solution of the integral Equation (3.10)

Remembering Equations (3.6) and (3.8) we can rewrite Equation (3.10) as:

ν(t) +
∫ t

0
ν(τ)

{
1√
t− τ

Ω(t, τ) + ω(t, τ)

}
dτ = 2µ0(t), (A31)

where:

Ω(t, τ) =
1√
π

{
− 1

2
√
κ

Rd(t)−Rd(τ)

t− τ
+
√
κH(t)

}

× exp

[
−(Rd(t)− (Rd(τ))2

4κ(t− τ)

]
, (A32)

ω(t, τ) =
1√

π(t− τ)

{
1

2
√
κ

Rd(t) +Rd(τ)

t− τ
−
√
κH(t)

}
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× exp

[
−(Rd(t) + (Rd(τ))2

4κ(t− τ)

]
, (A33)

Functions Ω(t, τ) and ω(t, τ) are continuous for τ ∈ [0, t]. Hence, the singularity

1/
√
t− τ of the kernel in Equation (A31) is presented in an explicit form.

We look for the solution of Equation (A31) for t ∈ [0, t̂], where t̂ ≤ te is an

arbitrary, but fixed positive constant. Let ∆t = t̂/N and tn = n∆t, where N is the

total number of time steps, n = 0, 1, .....N is the number of the current time step.

Note that t0 = 0 and tN = t̂. Discretisation of Equation (A31) gives:

ν(tn) +
n∑
j=1

∫ tj

tj−1

ν(τ)

{
Ω(tn, τ)√
tn − τ

+ ω(tn, τ)

}
dτ = 2µ0(tn), (A34)

where n = 0, 1, .....N . Note that

ν(t0) = ν(0) = 2µ0(0)

is the known constant derived in Appendix 5.

The first (n− 1) terms in the sum in Equation (A34) can be approximated as:∫ tj

tj−1

ν(τ)

{
Ω(tn, τ)√
tn − τ

+ ω(tn, τ)

}
dτ

≈ ν(tj) + ν(tj−1)

2

{
Ω(tn, τj)√
tn − τj

+ ω(tn, τj)

}
∆t, (A35)

where j = 1, 2, ....n−1; τj = tj−∆t
2

. This approximation is valid since all functions in

the integrand are continuous, and we look for the solution in the class of continuous

functions (ν(t) should be continuous for t ≥ 0). In this approximation the known

functions are taken at the points τ = τj (middle of the time interval [tj−1, tj]), while

the unknown function is taken as an arithmetic mean of its values at the times tj−1

and tj.

The last term in the sum in Equation (A34) has an integrable singularity 1/
√
t− τ

when τ → t−0 (recall that functions Ω(t, τ) and ω(t, τ) are continuous for τ ∈ [0, t]).

This allows us to approximate this term as:∫ tn

tn−1

ν(τ)

{
Ω(tn, τ)√
tn − τ

+ ω(tn, τ)

}
dτ

≈ ν(tn) + ν(tn−1)

2

[
Ω(tn, τn)

∫ tn

tn−1

dτ√
tn − τ

+ ω(tn, τn)∆t

]

=
ν(tn) + ν(tn−1)

2

[
2Ω(tn, τn)

√
tn − tn−1 + ω(tn, τn)∆t

]
= (ν(tn) + ν(tn−1))gn,

(A36)
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where

gn = Ω(tn, τn)
√

∆t+
ω(tn, τn)∆t

2
.

Equations (A35) and (A36) allow us to rewrite Equation (A34) in the form:

ν(tn)(1 + gn) + ν(tn−1)gn +
n−1∑
j=1

ν(tj) + ν(tj−1)

2

{
Ω(tn, τj)√
tn − τj

+ ω(tn, τj)

}
∆t = 2µ0(tn),

(A37)

where n = 1, 2, ....N ; Equation (A37) can be rewritten in an alternative form:

ν(tn) = −ν(tn−1)gn
1 + gn

− 1

1 + gn

n−1∑
j=1

ν(tj) + ν(tj−1)

2

×
{

Ω(tn, τj)√
tn − τj

+ ω(tn, τj)

}
∆t+

2µ0(tn)

1 + gn
. (A38)

Note that gn is a continuous function of ∆t, and gn → 0 when ∆t → +0. Hence,

1 + gn 6= 0 for a sufficiently small time step ∆t. For n = 1 the sum in Equation

(A38) is equal to zero and ν(t0) is a known constant (see above). This allows us

to calculate ν(t1) in an explicit form from Equation (A38). As soon as the value of

ν(t1) is found we can use Equation (A38) to find ν(t2) etc. At the nth time step,

Equation (A38) is used for calculating ν(tn), based on the values of ν(t0), ν(t1), ....

ν(tn−1) calculated at the previous time steps. At this stage all terms in the sum∑n−1
j=1 are already known.

In the limiting case when Rd(t) = Rd(τ) = Rd =const, functions Ω(t, τ) and

ω(t, τ) are simplified to:

Ω(t, τ) =
1√
π

√
κH(t), (A39)

ω(t, τ) =
1√

π(t− τ)

 Rd√
κ(t− τ)

−
√
κH(t)

 exp

[
− R2

d

κ(t− τ)

]
. (A310)

Appendix 4

Numerical calculation of the improper integrals in Equations

(3.11) and (3.23)

The integrals in Equations (3.11) and (3.23) have the same type of integrable sin-

gularity as the integral in Equation (3.5). The following analysis will focus on the
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latter equation which will enable us to simplify the notation. Let us rewrite this

equation as:

v(R, t̂) =
N∑
j=1

∫ tj

tj−1

ν(τ)G(t̂, τ, R)dτ, (A41)

where t̂ = tN , tn = n∆t, n = 0, 1, 2, ....N , ∆t = t̂/N . In all integrals we can

replace ν(τ) with the average values over the corresponding time interval (ν(tj−1) +

ν(tj))/2. Moreover, in all integrals, except the last one, we can replace G(t̂, τ, R)

with G(t̂, τj, R), where τj = (tj−1 + tj)/2. As a result, Equation (A41) can be

presented in a more explicit form:

v(R, t̂) =
N−1∑
j=1

ν(tj−1) + ν(tj)

2
G(t̂, τj, R)∆t+

ν(tN−1) + ν(tN)

2

∫ tN

tN−1

G(t̂, τ, R)dτ.

(A42)

Firstly we assume that an a priori chosen R is not equal to Rd(t̂). In this case

G(t̂, τ, R), as defined by Equation (3.6), approaches 0, when τ → t̂ − 0. Hence the

singularity in the integrand is not present and the last time step can be treated as

in all the previous time steps. This allows us to simplify Equation (A42) to:

v(R, t̂) =
N∑
j=1

ν(tj−1) + ν(tj)

2
G(t̂, τj, R)∆t. (A43)

In the case when R = Rd(t̂) the first exponent in Equation (3.6) tends to 1 when

τ → t̂−0. This leads to a singularity (t̂−τ)−1/2 in the integrand in Equation (A42).

As a result, the integral in this equation can be presented as:

∫ tN

tN−1

G(t̂, τN , R)dτ =

√
κ

2
√
π

exp

[
−(R−Rd(τN))2

4κ(t̂− τN)

] ∫ tN

tN−1

dτ√
t̂− τ

− exp

[
−(R +Rd(τN))2

4κ(t̂− τN)

]
∆t√
t̂− τN


=

√
κ√
2π

{√
2 exp

[
−(R−Rd(τN))2

2κ∆t

]
− exp

[
−(R +Rd(τN))2

2κ∆t

]}√
∆t. (A44)

The latter equation allows us to simplify the equation for v(R, t̂) for R = Rd(t̂) to:

v(R, t̂) =
N−1∑
j=1

ν(tj−1) + ν(tj)

2
G(t̂, τj, R)∆t

+
(ν(tN−1) + ν(tN))

√
κ

2
√

2π

{√
2 exp

[
−(R−Rd(τN))2

2κ∆t

]

− exp

[
−(R +Rd(τN))2

2κ∆t

]}√
∆t. (A45)
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Appendix 5

Derivation of the expression for µ0(0)

Having substituted Equation (3.20) into Equation (3.19) and integrating by parts

we obtain:

U
′

R(t, R)
∣∣∣
R=Rd(t)

=
∫ Reff

0
(ζTd0(ζ))

∂G1(t, R, ζ)

∂ζ

∣∣∣∣∣
R=Rd(t)

dζ

= (ζTdo(ζ)) [G2(t, Rd(t), ζ)]|ζ=Reff
−
∫ Reff

0
[G2(t, R, ζ)]|R=Rd(t) (ζTd0(ζ))

′

ζdζ, (A51)

where

G2(t, R, ζ) = −1

κ
[G0(t, R(t)− ζ) +G0(t, R(t) + ζ)]

= − 1

2
√
πκt

[
exp

(
−(R− ζ)2

4κt

)
+ exp

(
−(R + ζ)2

4κt

)]
.

One can see that the first term on the right hand side of Equation (A51) ap-

proaches zero when t → +0 (there is no singularity at t = 0) since Reff − Rd0 > 0.

Hence, remembering Equation (3.16), we obtain

U
′

R(t, R)
∣∣∣
R=Rd(t)

→ (ζTdo(ζ))
′

ζ

∣∣∣
ζ=Rd0

(A52)

when t→ +0.

Following the same approach and remembering Equation (3.16), we obtain:

U(t, R)|R=Rd(t) → (ζTdo(ζ))|ζ=Rd0
= Rd0Td0(Rd0) (A53)

when t→ +0. Remembering Equations (A52) and (A53), we obtain Equation (3.22)

as a limiting case of Equation (3.18) when t→ +0.

Appendix 6

Derivation of Equation (4.42)

Remembering that Solution (4.41) is applied to a very short time step, changes of

µ0(τ) in the integrand before the exponential term can be ignored. This allows us

to simplify (4.41) to

Θn(t) = qn exp

[
−(−1)δn,0Dltλ

2
n

Rd0Rd(t)

]
+ fnµ0(t)−
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fnµ0(0)

[
(−1)δn,0Dlλ

2
n

∫ t

0

1

Rd(τ)2
exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ

]
.

(A61)

µ0(τ) in the integrand of (4.41) is taken at the beginning of the time step.

Remembering that

d(Rd(τ)−1) = − R′d
R2
d(t)

dτ

we can rearrange the last term in (A61) to

(−1)δn,0Dlλ
2
n

∫ t

0

1

Rd(τ)2
exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(τ)

)]
dτ =

(−1)δn,0Dlλ
2
n

R′d
exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)

)] ∫ t

0

R′d
Rd(τ)2

exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
− 1

Rd(τ)

)]
dτ =

(−1)δn,0Dlλ
2
n

R′d
exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)

)]
αRd0

(−1)δn,0Dlλ2
n

(
exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
− 1

Rd(t)

)]
−

exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
− 1

Rd(0)

)])

=

(
1− exp

[
(−1)δn,0

Dlλ
2
n

αRd0

(
1

Rd(t)
− 1

Rd(0)

)])
=

(
1− exp

[
−(−1)δn,0

Dlλ
2
nt

Rd0Rd(t)

])
.

(A62)

When deriving (A62) we took into account (2.8).

Having substituted (A62) into (A61), we obtain (4.42).

Appendix 7

Derivation of Formula (5.9)

Introducing a new variable

u = (T − Tg0(Rg))R

we can simplify Equation (5.1) and initial and boundary conditions (5.3) – (5.4) to:

∂u

∂t
= κ

∂2u

∂R2
+RP (t, R), (A71)

u|t=0 = −T0R (A72)

u|R=R−
b

= u|R=R+
b
, kb

[
Rbu

′

R − u
]∣∣∣
R=R−

b

= kg
[
Rbu

′

R − u
]∣∣∣
R=R+

b

, u|R=Rg
= 0,

(A73)
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where

T0 ≡ T0(R) =

 Tg0(Rg)− Tb0(R) when R ≤ Rb

Tg0(Rg)− Tg0(R) when Rb < R ≤ Rg,
.

Conditions (A73) need to be amended by the boundary condition at R = 0. Since

T − Tg0 is finite at R = 0 then u|R=0 = 0.

We look for the solution of Equation (A71) in the form:

u =
∞∑
n=1

Θn(t)vn(R), (A74)

where functions vn(R) form the full set of non-trivial solutions of the eigenvalue

problem:
d2v

dR2
+ a2λ2v = 0 (A75)

subject to boundary conditions:

v|R=0 = v|R=Rg
= 0

v|R=R−
b

= v|R=R+
b

kb
[
Rbv

′
R − v

]∣∣∣
R=R−

b

= kg
[
Rbv

′
R − v

]∣∣∣
R=R+

b


, (A76)

where

a =
1√
κ

=


√

cbρb
kb
≡ ab when R ≤ Rb√

cpgρg
kg
≡ ag when Rb < R ≤ Rg.

(A77)

Note that λ has dimension 1/
√

time. We look for the solution of Equation (A75)

in the form:

v(R) =

 A sin(λabR) when R ≤ Rb

B sin(λag(R−Rg)) when Rb < R ≤ Rg.
(A78)

Function (A78) satisfies boundary conditions (A76) atR = 0. Having substituted

function (A78) into boundary conditions (A76) at R = Rb we obtain:

A sin(λabRb) = B sin(λag(Rb −Rg)), (A79)

Akb [Rbλab cos(λabRb)− sin(λabRb)] = Bkg [Rbλag cos(λag(Rb −Rg))− sin(λag(Rb −Rg))] .

(A710)

Condition (A79) is satisfied when:

A = [sin(λabRb)]
−1

B = [sin(λag(Rb −Rg))]
−1

 . (A711)
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Having substituted Equations (A711) into (A710) we obtain:

kb [Rbλab cot(λabRb)− 1] = kg [Rbλag cot(λag(Rb −Rg))− 1] . (A712)

Remembering the definitions of ab and ag, Equation (A712) can be simplified to:

√
kbcbρb cot(λabRb)−

√
kgcpgρg cot(λag(Rb −Rg)) =

kb − kg
Rbλ

. (A713)

Equation (A713) allows us to find a countable set of positive eigenvalues λn which

can be arranged in ascending order 0 < λ1 < λ2 < ..... Note that the negative

solutions −λn also satisfy Equation (A713) as both sides of this equation are odd

functions of λ. λ = 0, however, does not satisfy this equation. Having substituted

these values of λn into Equation (A78) and remembering Equations (A711) we obtain

the expressions for eigenfunctions vn in the form:

vn(R) =


sin(λnabR)
sin(λnabRb)

when R ≤ Rb

sin(λnag(R−Rg))
sin(λnag(Rb−Rg))

when Rb < R ≤ Rg

. (A714)

It can be shown (see Appendix 8) that functions vn(R) are orthogonal with

weight

b =

 kba
2
b = cbρb when R ≤ Rb

kga
2
g = cpgρg when Rb < R ≤ Rg

.

This means that:
∫ Rg

0 vn(R)vm(R)bdR = δnm||vn||2, where

δnm =

 1 when n = m

0 when n 6= m
.

The proof of completeness of this set of functions is much more complicated (it is

based on the methods of functional analysis and properties of Banach spaces [132]).

Implicitly, the fact that this set is complete, could be supported by the agreement

between our results in the limit Rg =∞ and Tg0 =const and those of Cooper [67].

The norm of vn with weight b is calculated as:

||vn||2 =
∫ Rg

0
v2
nbdR =

∫ Rb

0

[
sin(λnabR)

sin(λnabRb)

]2

cbρbdR+
∫ Rg

Rb

[
sin(λnag(R−Rg))

sin(λnag(Rb −Rg))

]2

cpgρgdR

=
cbρb

2 sin2(λnabRb)

[
Rb −

sin(2λnabRb)

2λnab

]

+
cpgρg

2 sin2(λnag(Rb −Rg))

[
Rg −Rb +

sin(2λnab(Rb −Rg))

2λnag

]
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=
cbρbRb

2 sin2(λnabRb)
+

cpgρg(Rg −Rb)

2 sin2(λnag(Rb −Rg))
− kb − kg

2Rbλ2
n

. (A715)

When deriving Equation (A715) we took into account Equation (A713). Since all

functions vn satisfy boundary conditions (A76), function u defined by expression

(A74) satisfies boundary conditions (A73). Let us expand RP (t, R) in a series over

vn:

RP (t, R) =
∞∑
n=1

pn(t)vn(R), (A716)

where:

pn(t) =
1

||vn||2
∫ Rg

0
RP (t, R)vn(R)bdR.

Remembering that P (t, R) = 0 at R > Rb the latter formula can be simplified to:

pn(t) =
cbρb
||vn||2

∫ Rb

0
RP (t, R)vn(R)dR.

Having substituted Equations (A74) and (A716) into Equation (A71)) we obtain:

∞∑
n=1

Θ
′

n(t)vn(R) = −
∞∑
n=1

Θn(t)λ2
nvn(R) +

∞∑
n=1

pn(t)vn(R). (A717)

When deriving Equation (A717) we took into account that functions vn(R) satisfy

Equation (A75) for λ = λn. Equation (A717) is satisfied if and only if:

Θ
′

n(t) = −λ2
nΘn(t) + pn(t). (A718)

The initial condition for Θn(t) can be obtained after substituting Expression

(A74) into initial condition (A72) for u:

∞∑
n=1

Θn(0)vn(R) = −T0R. (A719)

Remembering the orthogonality of vn with the weight b, we obtain from Equation

(A719):

Θn(0) =
1

||vn||2
∫ Rg

0
(−T0R)vn(R)bdR.

= − cbρb
||vn||2 sin(λnabRb)

∫ Rb

0
T0(R)R sin(λnabR)dR

− cpgρg
||vn||2 sin(λnag(Rb −Rg))

∫ Rg

Rb

T0(R)R sin(λnag(R−Rg))dR

If Tg0(R) = Tg0(Rg) =const, and Tb0(R) =const, then

T0 ≡ T0(R) =

 Tg0(Rg)− Tb0(Rb) when R ≤ Rb

0 when Rb < R ≤ Rg,
.
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and the expression for Θn(0) can be further simplified to:

Θn(0) = − cbρbT0

||vn||2 sin(λnabRb)

∫ Rb

0
R sin(λnabR)dR =

T0

√
kbcbρb

λn||vn||2
[
Rb cot(λnabRb)−

1

λnab

]
.

(A720)

The solution of Equation (A718) subject to the initial condition (A720) can be

written as:

Θn(t) = exp
(
−λ2

nt
)

Θn(0) +
∫ t

0
exp

(
−λ2

n (t− τ)
)
pn(τ)dτ. (A721)

Equation (5.9) follows from the definition of u and Equations (A74) and (A721).

Appendix 8

Proof of orthogonality of vn(R) with the weight b

Remembering Expressions (A714) for vn(R) we can write for n 6= m:

Inm ≡
∫ Rg

0
vn(R)vm(R)bdR =

kba
2
b

sin(λnabRb) sin(λmabRb)

∫ Rb

0
sin(λnabR) sin(λnabR)dR

+
kga

2
g

sin(λnag(Rb −Rg)) sin(λmag(Rb −Rg))

∫ Rg

Rb

sin(λnag(R−Rg)) sin(λmag(R−Rg))dR

=
kba

2
b

2 sin(λnabRb) sin(λmabRb)

[
sin((λn − λm)abRb)

(λn − λm)ab
− sin((λn + λm)abRb)

(λn + λm)ab

]

−
kga

2
g

2 sin(λnag(Rb −Rg)) sin(λmag(Rb −Rg))

×
[

sin((λn − λm)ag(Rb −Rg))

(λn − λm)ag
− sin((λn + λm)ag(Rb −Rg))

(λn + λm)ag

]

=
1

2(λn − λm)

[
kbab sin((λn − λm)abRb)

sin(λnabRb) sin(λmabRb)
− kgag sin((λn − λm)ag(Rb −Rg))

sin(λnag(Rb −Rg)) sin(λmag(Rb −Rg))

]

+
1

2(λn + λm)

[
− kbab sin((λn + λm)abRb)

sin(λnabRb) sin(λmabRb)
+

kgag sin((λn + λm)ag(Rb −Rg))

sin(λnag(Rb −Rg)) sin(λmag(Rb −Rg))

]

=
[kbab (cot(λmabRb)− cot(λnabRb))− kgag (cot(λmab(Rb −Rg))− cot(λnab(Rb −Rg)))]

2(λn − λm)

+
[−kbab (cot(λmabRb) + cot(λnabRb)) + kgag (cot(λmab(Rb −Rg)) + cot(λnab(Rb −Rg)))]

2(λn + λm)

Remembering Equation (A713) we can write:

Inm =
1

2(λn − λm)

(
kb − kg
Rbλm

− kb − kg
Rbλn

)
− 1

2(λn + λm)

(
kb − kg
Rbλm

+
kb − kg
Rbλn

)

=
kb − kg

2Rbλnλm
− kb − kg

2Rbλnλm
= 0.
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