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Objective

•To develop analytical solutions of the equation describing 
droplet heating in the presence of evaporation, taking into 
account the moving boundary effect. 

•To analyse these solutions by comparing  the predictions with  
existing models and available experimental data



Transient heating of an evaporating droplet

Governing equation:



Previous models

The conventional approach is based on the 
assumption that droplet radius remains 
constant during each timestep

Rd = Const

Problem: This assumption does not hold true 
for rapid evaporation



Model with Rd=Const

Everything is alright most of time
But at the end of the evaporation Rd changes
too fast, to be approximated as a constant



Model with Rd=Const

Everything is alright most of time
But at the end of the evaporation Rd changes
too fast, to be approximated as a constant

Obvious solution – “decreasing time step” will lead to increasing a computational time



Linear model

With

The problem at the end of the evaporation time disappeared



Analytical solution



Linear model

Assuming that R’d=0, the  previous expression reduces to the 
one predicted by the model  with Rd = const.

This means  that the improved model includes the previous 
one.



Results



Results



Integral model

The main concept of the new model is the 
assumption that the droplet radius as a function 
of time is known in the whole range:

The Rd(t)  function is known analytically .



Transient heating of an evaporating droplet



Transient heating of an evaporating droplet

The equation under new notations:



Let us introduce new variable:

Case



Integral model



Integral model



Integral model



Arbitrary 



Integral model

Algorithm:

1) Calculate Rd(t) using conventional model
2) Approximate Rd(t) with polynomial approximation
3) Calculate T(R,t) using Rd(t) from 2nd step
4) Calculate  Rd(t) using T(R,t) from 3rd step



Integral model - Results
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Integral model - Results
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Conclusions (effects of moving boundary)



Next steps

• Results with another models and experimental data

• Take into account droplet movement, thermal dilatation, radiation and 

coupling between liquid and gas phases

• Implement solution into a CFD code
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