Global instability of flow over a rotating disc

Jonathan Healey

Keele University

6th January 2011
1 Local and global stability theory
Outline

1. Local and global stability theory
2. Rotating disc flow
Outline

1. Local and global stability theory
2. Rotating disc flow
3. A new global frequency selection mechanism
Stability of shear layers

- There are many shear layers that are either parallel, or approximately parallel, e.g.
There are many shear layers that are either parallel, or approximately parallel, e.g. channel flows,
Stability of shear layers

- There are many shear layers that are either parallel, or approximately parallel, e.g.
 - channel flows,
 - boundary layers,

\[
\frac{\partial P}{\partial x} < 0 \quad \frac{\partial P}{\partial x} = 0 \quad \frac{\partial P}{\partial x} > 0
\]

\[
T_w > T_f
\]
unbounded shear layers,

jets wakes mixing layers
- unbounded shear layers,
 - jets
 - wakes
 - mixing layers

- Channel flows are exactly parallel.
unbounded shear layers,

Channel flows are exactly parallel.
The others may become ‘more parallel’ as the Reynolds number increases.
In ‘local’ theory, the basic flow is assumed parallel:

\[\tilde{u} = U(y) + \epsilon u(y) \exp i(\alpha x - \omega t) \]
\[\tilde{v} = \epsilon v(y) \exp i(\alpha x - \omega t) \]
\[\tilde{p} = P(x) + \epsilon p(y) \exp i(\alpha x - \omega t) \]

giving an ODE for \(v \), and an eigenrelation between \(\alpha \) and \(\omega \).
In ‘local’ theory, the basic flow is assumed parallel:

\[\tilde{u} = U(y) + \epsilon u(y) \exp i(\alpha x - \omega t) \]
\[\tilde{v} = \epsilon v(y) \exp i(\alpha x - \omega t) \]
\[\tilde{p} = P(x) + \epsilon p(y) \exp i(\alpha x - \omega t) \]

This gives an ODE for \(v \), and an eigenrelation between \(\alpha \) and \(\omega \).

In ‘global’ theory, the basic flow is nonparallel:

\[\tilde{u} = U(x, y) + \epsilon u(x, y) \exp(-i\omega_G t) \]
\[\tilde{v} = V(x, y) + \epsilon v(x, y) \exp(-i\omega_G t) \]
\[\tilde{p} = P(x, y) + \epsilon p(x, y) \exp(-i\omega_G t) \]

This gives a PDE for \(v \), and an eigenrelation for \(\omega_G \).
Local and global stability theory

- In ‘local’ theory, the basic flow is assumed parallel:
 \[\tilde{u} = U(y) + \epsilon u(y) \exp(i\alpha x - \omega t) \]
 \[\tilde{v} = \epsilon v(y) \exp(i\alpha x - \omega t) \]
 \[\tilde{p} = P(x) + \epsilon p(y) \exp(i\alpha x - \omega t) \]
 giving an ODE for \(v \), and an eigenrelation between \(\alpha \) and \(\omega \).

- In ‘global’ theory, the basic flow is nonparallel:
 \[\tilde{u} = U(x, y) + \epsilon u(x, y) \exp(-i\omega_G t) \]
 \[\tilde{v} = V(x, y) + \epsilon v(x, y) \exp(-i\omega_G t) \]
 \[\tilde{p} = P(x, y) + \epsilon p(x, y) \exp(-i\omega_G t) \]
 giving a PDE for \(v \), and an eigenrelation for \(\omega_G \).

- How are local and global theories related when the basic flow varies slowly in the \(x \) direction?
Is ω_G the most unstable local frequency, i.e. ω when $\text{Im}(\omega)$ is maximized over x and α?
Global frequency selection criteria

- Is ω_G the most unstable local frequency, i.e. ω when $\text{Im}(\omega)$ is maximized over x and α?
- No — this wave may propagate out of region of interest.
Global frequency selection criteria

- Is ω_G the most unstable local frequency, i.e., ω when $\text{Im}(\omega)$ is maximized over x and α?
- No — this wave may propagate out of region of interest.
- Consider propagation of a wavepacket produced impulsively:

convective instability

absolute instability
Global frequency selection criteria

- Is ω_G the most unstable local frequency, ie ω when $\text{Im}(\omega)$ is maximized over x and α?
- No — this wave may propagate out of region of interest.
- Consider propagation of a wavepacket produced impulsively:

Let $\omega = \omega_0$, where $d\omega/d\alpha = x/t = 0$, be the local absolute frequency.
Global frequency selection criteria

- Is ω_G the most unstable local frequency, i.e., ω when $\text{Im}(\omega)$ is maximized over x and α?
- No — this wave may propagate out of region of interest.
- Consider propagation of a wavepacket produced impulsively:

 ![Diagram](image)

 - Let $\omega = \omega_0$, where $d\omega/d\alpha = x/t = 0$, be the local absolute frequency.
 - How do the rays curve when the flow varies with x?
Sketch of rotating-disc flow
A rotating-disc experiment
Laminar-turbulent transition on the rotating disc

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Re_t</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregory, Stuart & Walker</td>
<td>1955</td>
<td>530</td>
<td>Visual, China-clay</td>
</tr>
<tr>
<td>Federov et al.</td>
<td>1976</td>
<td>515</td>
<td>Visual, napthalene</td>
</tr>
<tr>
<td>Clarkson, Chin & Shacter</td>
<td>1980</td>
<td>562</td>
<td>Visual, dye</td>
</tr>
<tr>
<td>Cobb & Saunders</td>
<td>1956</td>
<td>490</td>
<td>Heat transfer</td>
</tr>
<tr>
<td>Chin & Litt</td>
<td>1972</td>
<td>510</td>
<td>Mass transfer</td>
</tr>
<tr>
<td>Gregory & Walker</td>
<td>1960</td>
<td>505</td>
<td>Pressure probe</td>
</tr>
<tr>
<td>Smith</td>
<td>1946</td>
<td>557</td>
<td>Hot-wire</td>
</tr>
<tr>
<td>Kobayashi et al.</td>
<td>1980</td>
<td>500</td>
<td>Hot-wire</td>
</tr>
<tr>
<td>Malik, Wilkinson & Orszag</td>
<td>1981</td>
<td>520</td>
<td>Hot-wire</td>
</tr>
<tr>
<td>Wilkinson & Malik</td>
<td>1985</td>
<td>550</td>
<td>Hot-wire</td>
</tr>
<tr>
<td>Lingwood</td>
<td>1996</td>
<td>508</td>
<td>Hot-wire</td>
</tr>
<tr>
<td>Othman & Corke</td>
<td>2006</td>
<td>539</td>
<td>Hot-wire</td>
</tr>
</tbody>
</table>
Lingwood (1995) found, using local theory, that rotating disc flow is absolutely unstable for $Re > 507$.
Lingwood (1995) found, using local theory, that rotating disc flow is absolutely unstable for $Re > 507$.

She argued that this created a global instability destroying the laminar flow.
Lingwood (1995) found, using local theory, that rotating disc flow is absolutely unstable for $Re > 507$.

She argued that this created a global instability destroying the laminar flow.

But Davies & Carpenter (2003) found, using DNS of nonparallel linearized equations, that wavepackets could propagate through the locally absolutely unstable region.
Lingwood (1995) found, using local theory, that rotating disc flow is absolutely unstable for $Re > 507$.

She argued that this created a global instability destroying the laminar flow.

But Davies & Carpenter (2003) found, using DNS of nonparallel linearized equations, that wavepackets could propagate through the locally absolutely unstable region.

This implies that rotating disc flow is globally stable.
Lingwood (1995) found, using **local theory**, that rotating disc flow is absolutely unstable for $Re > 507$.

She argued that this created a global instability destroying the laminar flow.

But Davies & Carpenter (2003) found, using **DNS of nonparallel linearized equations**, that wavepackets could propagate through the locally absolutely unstable region.

This implies that rotating disc flow is **globally stable**.

We introduce a new global frequency selection mechanism.
We introduce a new global frequency selection mechanism.

It is relevant to rotating disc flow.
We introduce a new global frequency selection mechanism.

- It is relevant to rotating disc flow.
- It predicts global instability.
We introduce a new global frequency selection mechanism.
It is relevant to rotating disc flow.
It predicts global instability.
It may explain the observed variation in Re_t in experiments.
In some circumstances, the envelope, A, of a wavepacket

$$A(X, T) \exp i(\alpha x - \omega t)$$

satisfies the linearized complex Ginzburg-Landau eqn:

$$\frac{\partial A}{\partial T} + U \frac{\partial A}{\partial X} = \mu A + \gamma \frac{\partial^2 A}{\partial X^2}. $$
In some circumstances, the envelope, A, of a wavepacket

$$A(X, T) \exp \left(i \alpha x - \omega t \right)$$

satisfies the linearized complex Ginzburg-Landau eqn:

$$\frac{\partial A}{\partial T} + U \frac{\partial A}{\partial X} = \mu A + \gamma \frac{\partial^2 A}{\partial X^2}.$$

U is the group velocity of the packet;
An amplitude equation approach

- In some circumstances, the envelope, A, of a wavepacket

$$A(X, T) \exp \left(i(\alpha x - \omega t) \right)$$

satisfies the linearized complex Ginzburg-Landau eqn:

$$\frac{\partial A}{\partial T} + U \frac{\partial A}{\partial X} = \mu A + \gamma \frac{\partial^2 A}{\partial X^2}.$$

- U is the group velocity of the packet;

- $\text{Re}(\mu)$ is the growth rate;
An amplitude equation approach

- In some circumstances, the envelope, A, of a wavepacket

 $A(X, T) \exp i(\alpha x - \omega t)$

 satisfies the linearized complex Ginzburg-Landau eqn:

 $$\frac{\partial A}{\partial T} + U \frac{\partial A}{\partial X} = \mu A + \gamma \frac{\partial^2 A}{\partial X^2}.$$

 - U is the group velocity of the packet;
 - $\text{Re}(\mu)$ is the growth rate;
 - $\text{Im}(\mu)$ is the detuning between A and the carrier wave;
An amplitude equation approach

- In some circumstances, the envelope, A, of a wavepacket

$$A(X, T) \exp i(\alpha x - \omega t)$$

satisfies the linearized complex Ginzburg-Landau eqn:

$$\frac{\partial A}{\partial T} + U \frac{\partial A}{\partial X} = \mu A + \gamma \frac{\partial^2 A}{\partial X^2}.$$

- U is the group velocity of the packet;
- Re(μ) is the growth rate;
- Im(μ) is the detuning between A and the carrier wave;
- Re(γ) > 0 is the rate of spreading (dispersion/diffusion).
A model flow

- Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.
A model flow

- Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.

- Consider

 $$\mu = (1 + i\delta)\epsilon X, \quad U = \gamma = 1,$$

 where $\epsilon \ll 1$ implies a slowly varying flow.
A model flow

- Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.

- Consider

\[\mu = (1 + i\delta)\epsilon X, \quad U = \gamma = 1,\]

where $\epsilon \ll 1$ implies a slowly varying flow.

- This models a flow that
Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.

Consider

$$\mu = (1 + i\delta)\epsilon X, \quad U = \gamma = 1,$$

where $\epsilon \ll 1$ implies a slowly varying flow.

This models a flow that

- becomes progressively more unstable as X increases,
A model flow

- Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.

- Consider

 $$\mu = (1 + i\delta)\epsilon X, \quad U = \gamma = 1,$$

 where $\epsilon \ll 1$ implies a slowly varying flow.

- This models a flow that
 - becomes progressively more unstable as X increases,
 - has detuning when $\delta \neq 0$.
A model flow

- Taking the coefficients $U = U(X)$, $\mu = \mu(X)$ and $\gamma = \gamma(X)$ models the propagation of a wavepacket through a spatially varying flow.

- Consider

\[
\mu = (1 + i\delta)\epsilon X, \quad U = \gamma = 1,
\]

where $\epsilon \ll 1$ implies a slowly varying flow.

- This models a flow that
 - becomes progressively more unstable as X increases,
 - has detuning when $\delta \neq 0$.

- Hunt & Crighton (1991) give an exact impulsive solution for these coefficients.
Local results

Treat the coefficients U, μ and γ as constants.
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp(\alpha X - \omega T)$ into G-L eqn gives the local dispersion relation

$$\omega = U\alpha + i\mu - i\gamma\alpha^2.$$
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp(i(\alpha X - \omega T))$ into G-L eqn gives the local dispersion relation

$$\omega = U\alpha + i\mu - i\gamma\alpha^2.$$

- The most unstable local wave has $\alpha = 0$, giving $\omega = i\mu$.
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp(i(\alpha X - \omega T))$ into G-L eqn gives the local dispersion relation

$$\omega = U\alpha + i\mu - i\gamma\alpha^2.$$

- The most unstable local wave has $\alpha = 0$, giving $\omega = i\mu$.
- Our model is therefore locally unstable for $X > 0$.
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp(i(\alpha X - \omega T))$ into G-L eqn gives the local dispersion relation

$$\omega = U\alpha + i\mu - i\gamma\alpha^2.$$

- The most unstable local wave has $\alpha = 0$, giving $\omega = i\mu$.
- Our model is therefore locally unstable for $X > 0$.
- The local absolute frequency is

$$\omega_0 = i\left(\mu - \frac{U^2}{4\gamma}\right).$$
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp (\alpha X - \omega T)$ into G-L eqn gives the local dispersion relation

$$\omega = U\alpha + i\mu - i\gamma\alpha^2.$$

- The most unstable local wave has $\alpha = 0$, giving $\omega = i\mu$.
- Our model is therefore locally unstable for $X > 0$.
- The local absolute frequency is

$$\omega_0 = i \left(\mu - \frac{U^2}{4\gamma} \right)$$

- Our model is therefore locally absolutely unstable for $X > (4\epsilon)^{-1}$.

Jonathan Healey
Brighton, 6.1.2011
Local results

- Treat the coefficients U, μ and γ as constants.
- Substituting $A = A_0 \exp i(\alpha X - \omega T)$ into G-L eqn gives the local dispersion relation
 \[\omega = U\alpha + i\mu - i\gamma\alpha^2. \]
- The most unstable local wave has $\alpha = 0$, giving $\omega = i\mu$.
- Our model is therefore locally unstable for $X > 0$.
- The local absolute frequency is
 \[\omega_0 = i\left(\mu - \frac{U^2}{4\gamma}\right) \]
- Our model is therefore locally absolutely unstable for $X > (4\epsilon)^{-1}$.
- Local instability is independent of δ.

Jonathan Healey
Brighton, 6.1.2011
Global results

- Take Hunt & Crighton’s exact solution for our variable coefficients:
Global results

- Take Hunt & Crighton’s exact solution for our variable coefficients:
- As $T \to \infty$ for any fixed finite X,

$$A \sim \exp[\epsilon^2(1 - \delta^2 + 2i\delta)T^3/12].$$
Global results

- Take Hunt & Crighton’s exact solution for our variable coefficients:
- As $T \to \infty$ for any fixed finite X,

\[A \sim \exp[\epsilon^2(1 - \delta^2 + 2i\delta)T^3/12]. \]

- Global instability for $\delta^2 < 1$.
Global results

- Take Hunt & Crighton’s exact solution for our variable coefficients:
- As \(T \to \infty \) for any fixed finite \(X \),

\[
A \sim \exp[\epsilon^2(1 - \delta^2 + 2i\delta)T^3/12].
\]

- Global instability for \(\delta^2 < 1 \).
- Global decay for \(\delta^2 > 1 \).
An example

For $\epsilon = 0.01$, there is local convective instability for $X > 0$, and local absolute instability for $X > 25$.
An example

- For $\epsilon = 0.01$, there is local convective instability for $X > 0$, and local absolute instability for $X > 25$.
- Contours of $|A|$:

\[\delta = 0: \text{global instability} \]

\[\delta = 2: \text{global decay} \]
An example

- For $\epsilon = 0.01$, there is local convective instability for $X > 0$, and local absolute instability for $X > 25$.
- Contours of $|A|$:
 \begin{align*}
 \delta = 0: \text{global instability} \\
 \delta = 2: \text{global decay}
 \end{align*}
- Davies, Thomas & Carpenter (2007) argued that rotating disc flow has strong enough detuning (large enough δ) to make it globally stable, despite existence of local absolute instability.
Creation of global instability

- Remember that discs in experiments have finite radius!
Creation of global instability

- Remember that discs in experiments have finite radius!
- Hunt & Crighton’s solution has b.c.s $A \to 0$ as $X \to \pm \infty$.
Remember that discs in experiments have finite radius!

Hunt & Crighton’s solution has b.c.s $A \to 0$ as $X \to \pm \infty$.

Keep $A \to 0$ as $X \to -\infty$, but let $A = 0$ at $X = h$ (e.g. at edge of disc).
creation of global instability

- Remember that discs in experiments have finite radius!
- Hunt & Crighton’s solution has b.c.s \(A \to 0 \) as \(X \to \pm \infty \).
- Keep \(A \to 0 \) as \(X \to -\infty \), but let \(A = 0 \) at \(X = h \) (e.g. at edge of disc).
- This creates a discrete spectrum of global modes
 \[
 A = \psi(X) \exp(-i\omega_G T) \text{ where }
 \psi'' - \psi' + [i\omega_G + (1 + i\delta)\epsilon X]\psi = 0.
 \]
Remember that discs in experiments have finite radius!

Hunt & Crighton’s solution has b.c.s \(A \to 0 \) as \(X \to \pm \infty \).

Keep \(A \to 0 \) as \(X \to -\infty \), but let \(A = 0 \) at \(X = h \) (e.g. at edge of disc).

This creates a discrete spectrum of global modes
\[
A = \psi(X) \exp(-i\omega_G T) \text{ where }
\]
\[
\psi'' - \psi' + [i\omega_G + (1 + i\delta)\epsilon X]\psi = 0.
\]

The eigenvalues are
\[
\omega_G = i \left[(1 + i\delta)\epsilon h - 1/4 + \epsilon^{2/3}(1 + i\delta)^{2/3}b_n \right] = \omega_0(h) + O(\epsilon^{2/3})
\]

where \(\text{Ai}(b_n) = 0 \), i.e. \(b_1 \approx -2.34, \ b_2 \approx -4.09 \), etc.
Creation of global instability

- Remember that discs in experiments have finite radius!
- Hunt & Crighton’s solution has b.c.s $A \to 0$ as $X \to \pm \infty$.
- Keep $A \to 0$ as $X \to -\infty$, but let $A = 0$ at $X = h$ (e.g. at edge of disc).
- This creates a discrete spectrum of global modes $A = \psi(X) \exp(-i\omega_G T)$ where

$$\psi'' - \psi' + [i\omega_G + (1 + i\delta)\epsilon X]\psi = 0.$$

- The eigenvalues are

$$\omega_G = i \left[(1 + i\delta)\epsilon h - 1/4 + \epsilon^{2/3}(1 + i\delta)^{2/3} b_n \right] = \omega_0(h) + O(\epsilon^{2/3})$$

where $\text{Ai}(b_n) = 0$, i.e. $b_1 \approx -2.34$, $b_2 \approx -4.09$, etc.
- Local absolute instability at disc edge \Rightarrow global instability.
An example

Let $\epsilon = 0.01$, $\delta = 2$ and $A \to 0$ as $X \to -\infty$.

Global decay when $A \to 0$ as $X \to \infty$.

Global instability when $A = 0$ at $X = 100$.
Stabilizing nonlinearity

Consider

\[
\frac{\partial A}{\partial T} + \frac{\partial A}{\partial X} = 0.01(1 + i\delta)XA + \frac{\partial^2 A}{\partial X^2} - |A|^2 A.
\]
Qualitative behaviour of front

\[X = h \]

There is no front for \(h < h_c \), where \(h_c > X_{C/A} \).
Qualitative behaviour of front

There is no front for $h < h_c$, where $h_c > X_{C/A}$.

As h passes through h_c the front appears and moves inwards, approaching the convective-absolute transition location for large h.

Jonathan Healey

Brighton, 6.1.2011
Rotating disc transition experiments

Re_{trans}

Re_{edge}

Disc

Convective instability

Global instability

Jonathan Healey
Brighton, 6.1.2011
The out-flow boundary condition has a global effect on the flow when there is local absolute instability at the out-flow.
The out-flow boundary condition has a global effect on the flow when there is local absolute instability at the out-flow. The global frequency can then be driven by the out-flow local absolute instability.
Conclusions

- The out-flow boundary condition has a global effect on the flow when there is local absolute instability at the out-flow.
- The global frequency can then be driven by the out-flow local absolute instability.
- This provides a possible mechanism for global instability in rotating disc flow.
Conclusions

- The out-flow boundary condition has a global effect on the flow when there is local absolute instability at the out-flow.
- The global frequency can then be driven by the out-flow local absolute instability.
- This provides a possible mechanism for global instability in rotating disc flow.
- Re_t for the disc is correlated to Re_{edge}.
Conclusions

- The out-flow boundary condition has a global effect on the flow when there is local absolute instability at the out-flow.
- The global frequency can then be driven by the out-flow local absolute instability.
- This provides a possible mechanism for global instability in rotating disc flow.
- Re_t for the disc is correlated to Re_{edge}.
- Re_t follows the same qualitative dependence as the front in the nonlinear global mode theory.