Modelling of Fuel Ignition in a Rapid Compression Machine

Renzo Piazzesi

The Sir Harry Ricardo Laboratories Centre for Automotive Engineering

13/04/2010 Brighton – CAE Research Workshop

2-ACE Project: EPSRC EP/F058276/1

- Development of 2 Stroke Poppet Valve CAI/HCCI Engine
 - Reduce Emissions
 - Reduce Fuel consumption
 - Increase Performances
- University of Brighton Task:
 - CFD Simulation of the Engine
 - Reduced Chemical Mechanism (up to 50 species)
 - Foundation Study of Auto-Ignition in RCM
 - Cyclo-Hexane / Primary Reference Fuel

Lille Rapid Compression Machine RCM Details

- The RCM chosen is the Lille*
 - Lille RCM main specifications:

•	Bore	50 mm
•	Squish	19.3 mm
•	CC volume	37.9 cm ³
•	Stroke	200 mm
•	Compression ratio	9.8

Compression duration 60 ms

^{*} ref. "Autoinflammation à haute pression. Conception, réalisation et test d'une machine à compression rapide" M. Ribaucour et al, J Chim Phys 1992, pp. 2137

Lille Rapid Compression Machine

Piston Velocity Profile

Lille Rapid Compression Machine Choice of the computational domain: Dimensions chosen

- According to Lille RCM characteristics, the piston velocity profile obtained and the compression ratio
- Computational domain specifications:
 - Bore 50 mm
 - Squish 23 mm
 - Stroke 203 mm

Lille Rapid Compression Machine

Grid Specifications

Cyclo-Hexane: Boundary and Initial Conditions

- Direct comparison of 0D and CFD simulations
 - Chemical Mechanism of 50 species
 - Quiescent Chamber at TDC
 - Adiabatic Conditions
- Stoichiometric Mixture in Mass Fraction
 - 0.0637 % C₆H₁₂
 - 0.2181 % O₂
 - 0.7182 % N₂
- TDC Mixture Temperature [682K, 910K]
- TDC Mixture Pressure [7.27 bar, 9.75 bar]

Cyclo-Hexane: Results from TDC 682 K @ 7.27 bar

Cyclo-Hexane: Results from TDC 702 K @ 7.48 bar

Cyclo-Hexane: Results from TDC 731 K @ 7.83 bar

Cyclo-Hexane: Results from TDC 762 K @ 8.14 bar

Cyclo-Hexane: Results from TDC 788 K @ 8.44 bar

Cyclo-Hexane: Results from TDC 813 K @ 8.69 bar

Cyclo-Hexane: Results from TDC 910 K @ 9.75 bar

Cyclo-Hexane: Comparison with Lille Experiments Cool Flame and Total Ignition Delays

Primary Reference Fuel: Boundary and Initial Conditions

- Mixture of iso-Octane ($i-C_8H_{18}$) and n-Heptane ($n-C_7H_{16}$)
- Chemical Mechanism of 40 species
- BDC at various RONs and Dilutions
- Nitrogen considered as dilution species
- Initial Mixture @ 300 K and 1 bar
- Stoichiometric Fuel to Oxygen ratio

PRF: Results from BDC

PRF: Ignition Delay vs RON

PRF: Ignition Delay vs Nitrogen Excess

Conclusions

- Cyclo-Hexane results:
 - Consistent 0D CFD
 - Qualitative Agreement with Experiments
- PRF results:
 - Ignition Strongly dependent on RON
 - Dilution leading to higher compressed T promoting faster ignition

Thank You for Your Attention...

Renzo Piazzesi

Centre for Automotive Engineering www.brighton.ac.uk/cae

