Modelling of two-phase vortex ring flow based on the fully Lagrangian Approach

Oyuna Rybdylova, S. Begg, I. Danaila, F. Kaplanski, A.N. Osiptsov, S.S. Sazhin

The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, University of Brighton
Laboratoire de Mathematiques Raphael Salem, Universite de Rouen
Laboratory of Multiphase Physics, Tallinn University of Technology
Laboratory of Multiphase Flows, Institute of Mechanics, Lomonosov Moscow State University
Outline

• Introduction
• Experimental observations
• FLA. Mathematical formulation
• Results and Discussion:
 – FLA + Analytical Solution
 – FLA + DNS
• Further work
Vortex ring flows

Classical publications:
 Helmholtz 1858
 Lamb 1932
 Saffman 1992
 Shariff & Leonard 1992
 Mohseni & Gharib 1998
+ much more experimental and theoretical studies

Papers from the CAE (SHRL):
 Kaplanski, F., Sazhin, S. S., Begg, S., Fukumoto, Y. & Heikal, M. 2010
 Kaplanski F., Fukumoto, Y. & Rudi, U. 2012
 Danaila, I., Kaplanski, F. & Sazhin, S. 2015
Motivation

EPSRC project “Investigation of vortex ring-like structures in internal combustion engines, taking into account thermal and confinement effects”

Extract from ‘Aims and objectives’: “5. To investigate the applicability of the full Lagrangian approach to modelling sprays in the presence of swirl, thermal gradients, and the heating and evaporation of droplets.”

A typical high-speed photograph of a G-DI spray (Begg et al 2009)
Experimental observations:

Injector 5: Bosch HDEV Hollow Cone, DI piezoelectric, 100-200 bar fuel pressure, high flow rate 42 mg/ms at 200 bar, multiple injection

Vortex ring formation
Why FLA?

Lagrangian frame deformation

Number of folds
Mathematical formulation

One-way coupling

Carrier phase: viscous incompressible liquid
 (DNS and Kaplanski-Rudi solution)

Dispersed phase: identical spherical particles/droplets, pressureless continuum

Force acting on a particle: aerodynamic drag force
Mathematical formulation

Fully Lagrangian approach:

Lagrangian variables:

Coordinates of trajectory origin

+ Time/parameter along a particle trajectory

\[n_s \left| J \right| = n_s^0 \left| J_0 \right| \]

\[\frac{dr}{dt} = v_s \]

\[m \frac{dv_s}{dt} = f_s \]

+ aux. equations for the Jacobian

\[J_{ij} = \frac{\partial x_i}{\partial x_{0j}} \]
Carrier phase: vortex ring

Incompressible viscous liquid

Cylindrical coordinates

• Kaplanski analytical solution

\[\Psi = -\frac{r\sqrt{\text{Re}}}{4\sqrt{2t}} \int_0^\infty F \left(x, \sqrt{\text{Re}} \frac{z - z_{vc}}{\sqrt{2t}} \right) J_1 \left(\sqrt{\text{Re}} \frac{x}{\sqrt{2t}} \right) J_1 \left(\sqrt{\text{Re}} \frac{rx}{\sqrt{2t}} \right) dx. \]

• DNS (Second order finite difference)
Dispersed phase equations:

\[\beta = \frac{6\pi\sigma\mu R_0^2}{m\Gamma_0} \]

\[n_d r |J| = n_{d0} r_0 \]
\[\frac{d\mathbf{r}_d}{dt} = \mathbf{v}_d \]
\[\frac{d\mathbf{v}_d}{dt} = \beta(\mathbf{v} - \mathbf{v}_d) \]
\[\frac{\partial J_{ij}}{\partial t} = q_{ij} \]
\[\frac{\partial q_{ij}}{\partial t} = \beta \left(\frac{\partial v_i}{\partial x_1} J_{1j} + \frac{\partial v_i}{\partial x_2} J_{2j} - q_{ij} \right) \]
\[J_{ij} = \frac{\partial x_{id}}{\partial x_{j0}} \quad q_{ij} = \frac{\partial v_{id}}{\partial x_{j0}} \quad 1 - r \]
\[r_d = r_{d0}, \quad z_d = z_{d0}, \quad u_d = u_{d0}, \quad v_d = v_{d0}, \quad n_d = n_{d0} \]
\[q_{ij} = 0, \quad J_{ij} = \delta_{ij} \]

Initial conditions:
Two-phase flow, number density
Simulations based on Kaplanski solution,

$Re = 100$

Two-phase jet

Cloud of particles ahead of the vortex ring
Two-phase flow, number density

Simulations based on DNS

Re = 20 000

Propagation of vortex ring in a cloud of particles
Two-phase jet, number density

Simulations based on DNS

Re = 20 000

Injection

Flow
Further work

• Two-phase jet, injection: more detailed study
• Comparison between DNS+FLA and Kaplanski+FLA
• Evolution of droplet number density in confined vortex rings