A Fundamental Study of the Novel Poppet Valve 2-Stroke Auto-ignition Combustion Engine (2-ACE)

Renzo Piazzesi

The Sir Harry Ricardo Laboratories Centre for Automotive Engineering

06/04/2009 - Group Meeting

2ACE – Project Members of Consortium

- Brunel University
- University of Brighton
- University of Manchester
- University of Leeds

- Ricardo UK
- Innospec

University of Brighton Tasks

- Develop and apply reactive CFD simulations of the engine
 - Applying newly developed spray models
 - and auto-ignition Chemistry (in cooperation with Leeds)
 - Conducting CFD calculations at different operational regimes looking at HCCI

Further improvement of Spray models in FLUENT®

- Source terms distribution over neighbouring cells allows to:
 - decrease dramatically the mesh size
 - improve the spray penetration prediction
- Modified WAVE model + rigid body concept
- Droplet heating and evaporation:
 - Conduction limit model
 - Effective Thermal Conductivity (ETC) model

Fan Injector Slot's Dimensions Measured by Optical Microscopy

University of Brighton Tasks

- Develop and apply reactive CFD simulations of the engine
 - Applying newly developed spray models
 - and auto-ignition Chemistry (in cooperation with Leeds)
 - Conducting CFD calculations at different operational regimes looking at HCCI

Cyclo-Hexane as reference fuel

- 0D simulations of cyclo-hexane auto-ignition behaviour
 - Rapid compression machine (data from Lille)
 - Full chemical mechanism (obtained by Nancy in shock tube experiments)
 - Reducing the complete mechanism in a skeleton mechanism suitable to be implemented in a CFD code
- Implementation of the Dynamic Decomposition Technique
- Investigating Shell-like model

0D results from Leeds partner on Cyclo-Hexane

- Reduction to "skeleton 1" (116 species, 845 reactions)
- Reduction by Quasi-Steady State Analysis QSSA (35 species, 238 reactions)

0D results from Leeds partner on Cyclo-Hexane

Temperature-time profile using "skeleton 1" (116 species, 845 reactions)

University of Brighton Tasks

- Develop and apply reactive CFD simulations of the engine
 - Applying newly developed spray models
 - and auto-ignition Chemistry (in cooperation with Leeds)
 - Conducting CFD calculations at different operational regimes looking at HCCI

Preliminary simulations of the 2-ACE engine

• Motored engine results speed 1000 RPM (atmospheric pressure

condition at the intake and exhaust)

Preliminary simulations of the 2-ACE engine

AdGIF UNREGISTERED - www.gif-animator.com

Contours of Static Temperature (k) (Time=3.0000e-01) Mar 30, 2009 Crank Angle=1799.99(deg) FLUENT 6.3 (3d, dp, pbns, dynamesh, ske, unsteady)

AdGIF UNREGISTERED - www.gif-animator.com

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=3.0000e-01) Mar 30, 2009 Crank Angle=1799.99(deg) FLUENT 6.3 (3d, dp, pbns, dynamesh, ske, unsteady)

Thank You for Your Attention...

Renzo Piazzesi

Centre for Automotive Engineering www.brighton.ac.uk/cae

