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Two approaches tomodelling the heating of evaporating droplets have beenwidely used in engineering applica-
tions. In the first approach the heat rate supplied to the droplets to raise their temperatures, q̇d, is derived from
the requirement that droplet evaporation rates, inferred from steady-state equations for mass and heat balance,
should be the same. The second approach is based on the direct calculation of the distribution of temperature
inside droplets assuming that their thermal conductivity is not infinitely large. The implications of these two ap-
proaches are compared for the case of stationary droplets in conditions relevant to Diesel engines. It is pointed
out that although the trends of time evolution of q̇d predicted by both approaches are similar, actual values of
q̇d predicted by these approaches can be visibly different. This difference can lead to noticeable differences in
predicted droplet surface temperatures, radii and evaporation times. Possible reasons for these differences are
discussed.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since the pioneering publications by Spalding (see [1]), the evapora-
tion rate of stationary droplets ṁd has been estimated based on the
following well known equation [2,3]:

ṁd ¼ −4πRdDvρtotal ln 1þ BMð Þ; ð1Þ

where

BM ¼ ρvs−ρv∞
ρgs

ð2Þ

is the Spalding mass transfer number, ρvs and ρv ∞ are densities of va-
pour in the vicinity of droplet surfaces and at a large distance from
them, ρg is the density of the ambient gas (air), Rd is the droplet radius,
Dv is the diffusion coefficient of vapour in gas, and ρtotal= ρg+ ρv is the
total density of the mixture of vapour and gas. Note that ṁd≤0.

The derivation of Expression (1) was based on a number of assump-
tions, perhaps one of the most important of which is the assumption
that ρtotal= const and does not dependon thedistance from the droplet
surface. This assumption can be justified when the temperature of the
droplet is low and the difference between gas and droplet surface
temperature is small (slow evaporation). In practical engineering appli-
cations, however, these restrictions of the range of applicability of Ex-
pression (1) are commonly ignored (e.g. [4]). Note that Expression (1)
4

cannot be used when the droplet surface temperature approaches boil-
ing temperaturewhen ρgs=0 and BM becomes infinitely large (e.g. [5]).

Amore rigorous approach to the analysis of droplet evaporationwas
presented by Tonini and Cossali [6,7]. In themodel suggested and devel-
oped in these papers, the requirement that ρtotal = const was relaxed.
The species, momentum and energy conservation equations were
solved in a radial coordinate system, accounting explicitly for the gas
density dependence on temperature and vapour concentration. Howev-
er, as in the case of Expression (1), the problemwas solved based on the
quasi-steady state approximation (terms proportional to partial time
derivatives were ignored in all equations) and the droplet surface tem-
perature was assumed to be fixed during any time step. The effects of
temperature gradient inside droplets were ignored (their thermal con-
ductivity was assumed to be infinitely large).

An alternative expression for ṁd was obtained based on the analysis
of the heat balance equation. Assuming that the evaporating droplet is
stationary, as in the case of Expression (1), this equation for an arbitrary
distance R N Rd from the centre of the droplet can be presented in the
form [8]:

4πR2kg
dT
dR

¼ −ṁdcpv T−Tsð Þ−ṁdL Tsð Þ þ q̇d; ð3Þ

where kg, cpv and L(Ts) are gas thermal conductivity, vapour specific heat
capacity at constant pressure and specific heat of evaporation at the
droplet surface temperature Ts. As in Expression (1), ṁd≤0. The left
hand side of this equation shows the heat supplied from the surround-
ing gas to the droplet. The first term on the right hand side shows the
heat required to heat fuel vapour from Ts to T= T(R) (gas temperature
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Nomenclature

BM Spalding mass transfer number
BT Spalding heat transfer number
c specific heat capacity
Dv binary diffusion coefficient of vapour in air
h convection heat transfer coefficient
h0 parameter introduced in Expression (9)
k thermal conductivity
L latent heat of evaporation
Le Lewis number
ṁd evaporation rate
q̇d heat rate
qn parameter introduced in Expression (9)
R distance from the droplet centre
Rd droplet radius
t time
T temperature

Greek symbols
κR parameter introduced in Expression (9)
λ parameter defined by Eq. (10)
μ0 parameter introduced in Expression (9)
ρ density
φ parameter defined by Eq. (7)

Subscripts
d droplet
e evaporation
eff effective
g gas
p constant pressure
s surface
v vapour
∞ at a large distance from the droplet
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at the distance R from the centre of the droplet). The second and third
terms on the right hand side show the heat spent on droplet evapora-
tion and raising its temperature (when q̇d N 0) respectively.

Rearranging this equation and its integration from T = Ts to T = Tg
(ambient gas temperature) and from R = Rd to R = ∞, assuming that
the temperature dependence of kg and cpv can be ignored, gives [8]:

ṁd ¼ −
4πkgRd

cpv
ln 1þ BTð Þ; ð4Þ

where

BT ¼
cpv Tg−Ts

� �
L Tsð Þ− q̇d=ṁdÞ

� ð5Þ

is the Spalding heat transfer number. From Eqs. (1) and (4) follows the
relation between BT and BM [8]:

BT ¼ 1þ BMð Þφ−1; ð6Þ

where

φ ¼ cpv
cpg

 !
1
Le

; ð7Þ

Le = kg/(cpgDvgρtotal) is the Lewis number.
Eq. (5) can be rewritten as:

q̇d ¼ −ṁd

cpv Tg−Ts

� �
BT

−L Tsð Þ
24 35 ¼ −ṁd

cpv Tg−Ts

� �
1þ BMð Þφ−1

−L Tsð Þ
24 35: ð8Þ

Since the pioneering paper by Abramzon and Sirignano [8], Expres-
sion (8) has been widely used for modelling the heating of evaporating
droplets. The assumptions on which the derivation of this expression
was based (e.g. the validity of Expression (1)) have been almost univer-
sally ignored. An obvious limitation of Expression (8) is that the value of
q̇d is not affected by the thermal conductivity of liquid, which contradicts
the physical nature of q̇d, as discussed later in the paper.

An alternative approach to the calculation of q̇d could be based on the
analysis of temperature distribution inside droplets, inferred from the
direct analysis of convective heating of evaporating droplets (see [2]
for the details). This approach is restricted to the case when liquid ther-
mal conductivity is finite, which can be expected for any realistic liquid.

The focus of this paper is on the comparison of these two approaches
to the calculation of q̇d and their implications for the modelling of drop-
let heating and evaporation in conditions typical for Diesel engines. The
analysis is focused on stationary droplets, although it can be easily gen-
eralised to the case of moving droplets, using the effective thermal con-
ductivity (ETC) model (see [2,3]).

2. Model

Assuming that the convection heat transfer coefficient h = const,
the solution to the heat conduction equation inside droplets, assuming
that all processes are spherically symmetric, can be presented as [2,3]:

T R; tð Þ ¼ Rd

R

X∞
n¼1

n
qn exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n
μ0 0ð Þ exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n

Z t

0

dμ0 τð Þ
dτ

exp −κRλ
2
n t−τð Þ

h i
dτ
o
sin λn

R
Rd

� �� �
þ Teff tð Þ;

ð9Þ

where λn values are solutions to the equation:

λ cosλþ h0 sinλ ¼ 0; ð10Þ

jjvnjj2 ¼ 1
2

1− sin2λn

2λn

� �
¼ 1

2
1þ h0

h20 þ λ2
n

 !
;

qn ¼ 1
Rdjjvnjj2

Z Rd

0

eT0 Rð Þ sin λn
R
Rd

� �� �
dR; κR ¼ kl

clρlR
2
d

; μ0 tð Þ ¼ hTg tð ÞRd

kl
;

h0= (hRd/kl)− 1andeT0 Rð Þ ¼ RTd0 Rð Þ=Rd. The solution to Eq. (10) gives a
set of positive eigenvalues λn numbered in ascending order (n=1, 2,…),

Teff ¼ Tg þ
ρlLṘde

h
; Ṙde ¼ ṁd

4πR2
dρl

;

whereρl is the liquiddensity, andh for stationary evaporating droplets can
be estimated as [2]:

h ¼ 2kg
Rd

ln 1þ BTð Þ
BT

; ð11Þ

where BT is defined by Eq. (5).
The rate of droplet heating, leading to the rise of their temperatures,

can be estimated as

q̇d ¼ 4πR2
dkl

∂T
∂R
			
R¼Rd−0

ð12Þ

where q̇dN0 when the droplet is heated.
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Fig. 1. Plots of q̇d versus time predicted by the model based on Expressions (1) and (8)
(model 1) and Eqs. (13) and (14) (model 2) for an evaporating n-dodecane droplet heated
in air at a pressure of 30 bar and temperature of 700 K. The initial droplet temperature and
radius are assumed to be equal to 300 K and 10 μm respectively.
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Having substituted (9) into (12) we obtain:

q̇d ¼ 4πRdkl
X∞
n¼1

n
qn exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n
μ0 0ð Þ exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n

Z t

0

dμ0 τð Þ
dτ

exp −κRλ
2
n t−τð Þ

h i
dτ
o
−1−h0½ � sinλn:

ð13Þ

Expression (13) is applicable to any time stepwith t=0 referring to
the beginning of the time step; t refers to the end of the time step. The
values of q̇d at the beginning of each time step are equal to the values
of q̇d at the end of the previous time step or the start of the heating pro-
cess. Hence, without loss of generality we can assume that t = 0 in
Expression (13). The values of q̇d predicted by Expression (13) were
shown to coincide within the accuracy of plotting with those predicted
by Expression (12) using the numerical differentiation of the tempera-
ture predicted by Expression (9).

Expression (13) could be potentially generalised to take into account
the effect of the moving droplet interface during the evaporation
process, using the solution for the distribution of temperature inside a
heated droplet presented in [9]. The analysis of the contribution of this
effect, however, is beyond the scope of this paper.

Once the values of q̇d have been obtained, the values of ṁd can be
obtained from the numerical solution of Eq. (4). The latter equation
can be rewritten as:

ṁd ¼ −
4πkgRd

cpv
ln 1þ

cpv Tg−Ts

� �
ṁd

L Tsð Þṁd− q̇d

0@ 1A: ð14Þ

One can show that Eq. (14) has two solutions, ṁd ¼ 0 (non-
evaporating droplet) and ṁd b 0 (evaporating droplet), when

4πkgRd Tg−Ts

� �
q̇d

N1; ð15Þ

and only one trivial solution ṁd ¼ 0 (non-evaporating droplet) when
Condition (15) is not satisfied.

In the limiting casewhen BT≪ 1, Eq. (14) has the analytical solution:

ṁd ¼ 1
L Tsð Þ q̇d−4πkgRd Tg−Ts

� �h i
: ð16Þ

This solution does not have physical meaning unless Condition (15)
is satisfied. Expression (1) can still be used in this approach if

BM ¼ 1þ BTð Þ1=φ−1: ð17Þ

Eqs. (9), (11), (13) and (14) are applied at each time step. All ther-
modynamic and transport properties for liquid and gas are assumed
constant during each time step but their changes from one time step
to another due to the corresponding changes in temperature are taken
into account. The effects of thermal swelling are taken into account
using the conventional approach (see Eq. (25) of [4]).

3. Results and discussion

The model described in the previous section has been applied to the
analysis of heating of an evaporating n-dodecane droplet in air at a pres-
sure of 30 bar and temperature of 700 K. Thermodynamic and transport
properties of n-dodecane are mainly taken to be the same as in [10],
except for the diffusion coefficient for n-dodecane vapour in air which
was taken from [11]. The initial droplet temperature and radius are as-
sumed equal to 300 K and 10 μm respectively. The results predicted by
Eqs. (13) and (14) (model 2) are compared with those predicted by the
conventional model based on Expressions (1) and (8) (model 1). In
both cases the finite thermal conductivity of liquid has been taken into
account and the distribution of temperature inside droplets has been
predicted by Eq. (9).

The values of q̇d , predicted by these two approaches are shown in
Fig. 1. Note that at the very final stages of droplet evaporation the values
of q̇d predicted by the model based on Eqs. (13) and (14) became nega-
tive (although close to zero) which eventually led to the situationwhen
Eq. (14) had no real solutions. To avoid this situation the distribution of
temperature inside droplets was frozen at the moment when q̇d ¼ 0.
Also, at the very final stage of droplet evaporation, the predicted droplet
temperature could approach the critical temperature and even exceed
it. This was partly remedied by assuming that once Teff has reached its
minimal value it remains at this level until the droplet fully evaporates.
These assumptions are expected to produce minor effects on the pre-
dicted surface temperatures and radii of droplets which are not impor-
tant for practical applications. The problems with modelling droplet
heating and evaporation at the final stages of droplet evaporation
when dRd/dt → ∞ were recognised in our previous studies (e.g. [12]).

As one can see from Fig. 1, the time dependence trends for q̇d, pre-
dicted by both approaches are rather similar, but the actual values of
q̇d are noticeably different. This difference in the values of q̇d leads to
rather large differences in the corresponding values of droplet radii
and surface temperatures versus time, as shown in Fig. 2. As follows
from the latter figure, the model based on Eqs. (13) and (14) predicts
lower droplet surface temperatures and shorter evaporation times com-
pared with the model based on Expressions (1) and (8). Lower droplet
surface temperatures predicted by model 2 compared with model 1 are
expected to lead to lower values of the heat fluxes at the surface of the
droplet. This is consistent with the predicted values of q̇d shown in Fig. 1.

Similar trends in time evolution of the parameters predicted by both
models allow us to use them for qualitative analysis of droplet evapora-
tion, but their reliability for quantitative analysis of the processes
remains unclear. One of the reasons for the differences between the
predicted results might lie in the fact that both approaches to the calcu-
lation of the evaporation rate are based on the quasi-steady-state
approximation. The limitations of this approximation for the case of
non-evaporating droplet heating were discussed in [13,14].
4. Conclusions

Two approaches to modelling the heating of evaporating droplets
have been compared. In the first approach, the heat rate supplied to
the droplets to raise their temperatures, q̇d, is derived from the require-
ment that the rates of droplet evaporationṁd, inferred fromsteady-state
equations for mass and heat balance in the gas phase, should be the
same (in this approach the values of q̇d do not depend on the value of
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Fig. 2. The same as in Fig. 1 but for droplet surface temperatures (Ts) and radii (Rd).
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liquid thermal conductivity). The second approach is based on the direct
calculation of the distribution of temperature inside droplets assuming
that their thermal conductivity is not infinitely large. The implications
of these two approaches are compared for the case of stationary drop-
lets in conditions relevant to Diesel engines. It is pointed out that the
trends in q̇d time evolution, predicted by both approaches, are similar,
but the actual values of q̇d at any given time instant are visibly different.
This difference can lead to noticeable differences in predicted droplet
surface temperatures, radii and evaporation times. One possible reason
for these differences is that the calculations of the evaporation rate in
both approaches are based on the quasi-steady-state approximation. It
is concluded that both approaches to the calculation of q̇d can be applied
for qualitative analysis of droplet heating and evaporation, but caution
should be exercisedwhen using either of them for quantitative analysis.
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