

Department of Mechanical Engineering

Hybrid Electric Powertrains

Chris Brace

- The hybrid electric powertrain
- Impact on IC engine
- Some examples
- Case study REEV
- Outlook

Air quality – a bigger driver than CO_2 ?

Passenger car low carbon technology roadmap

Four Key Hybrid Advantages

ENGINE DOWNSIZING AND LOAD MANAGEMENT

- Electric torque assist to allow for smaller engine
- E-boosting to allow downsizing
- Engine can operate in efficient region
- Start/Stop

ENERGY RECOVERY, STORAGE AND RE-USE

- Regenerative braking: e-machine to battery or flywheel
- Exhaust energy recovery:
 - Turbine (pressure)
 - Bottoming cycle
 (heat)

REDUCED ANCILLARY LOADS

- Electrifying A/C compressors, pumps, and fans means reduced energy.
- High voltage systems more efficient

ZERO TAILPIPE EMISSIONS MODE

- Electric-only range helps improve city smog.
- Inexpensive short journeys

- There is an effectively infinite range of possible configurations of hybrid electric powertrain
- Can be classified according to
 - Level of hybridisation
 - Motor position(s)
 - Arrangement of major components

Levels of Hybridisation

Hybrid architecture - motor positon

BorgWarner Inc.

ℵ BorgWarner

Arrangement of major components

Toyota Prius – setting the bar high

 Novel (then and now!) application of epicyclic transmission as a CVT in a hybrid powertrain

- IC Engine Duty cycle radically changes once the powertrain is hybridised
- Large influence on
 - Base engine design
 - Air path
 - Thermal management
 - Ancillaries
 - Optimisation

Hybrid impact on operating region

New base engine design freedom

- Most modern engines are very flexible
 - Speed, load, temperature, transient
- Hybrids can reduce or remove this requirement for flexibility
- Reduced set of desirable attributes -
 - Efficiency
 - Cost
 - Clean
 - Sustainable
 - Package
 - NVH

Historical trends - the tip-in/efficiency trade-off

Future dynamic response/efficiency trade-off

Future dynamic response/efficiency trade-off

VR

SuperGen

- Integrated starter-generator with hybridisation and supercharging functionality
- Mild-hybrid features including stop-start, recuperation and torque-assist functions
- Instead of one large ISG motor, uses two smaller emachines which operate together in hybrid modes and independently for boosting functions
- Integrates power-splitting traction drive transmission with the two electric machines to provide a fullyvariable, fast-response and efficient electromechanical transmission system
- Compressor speed completely decoupled from the crankshaft, >140:1 ratio at 1000rpm engine speed
- Conventional compressor technology based on turbocharger practice, compatible with EGR and multi-stage operation

Supergen Arrangement

Fully Electric Turbocharger – Flexible Turbocompounding

Improving air path toolchain

Future dynamic response/efficiency trade-off

Range extended electric vehicle

- Smaller battery than pure EV
- Range extender of some form
 - IC Engine
 - Gas turbine
 - Rotary
 - Fuel cell

REEV Driveline Architecture

Other types of IC Engine?

Low Cost Auxiliary Power Unit - LowCAP

PVR

- Ashwoods Automotive Ltd
- Tata Motors European Technical Centre (TMETC)
- University of Bath

Innovate UK funded CR&D project

Innovate UK

Aim of the project

To design, model, develop and evaluate an industry first 'Low cost' auxiliary power unit for REEVs

The REEV landscape – some existing concepts

PVR

Mahle Powertrain

- 900cc 2-cylinder gasoline bespoke engine
- 30 kW at 4000 rpm

Lotus Engineering

- 1200cc, 3-cylinder gasoline bespoke engine
- 38 kW

Both were REEV demonstrators, yet to reach production stage

BMW i3

- 647 cc two-cylinder gasoline engine
- RE version costs additional US\$3,850 over its fully electric
- version

LowCAP

- Philosophy
 - Use a low cost, high volume, well optimised production gasoline engine
 - Innovative low cost motor and inverter by Ashwoods Automotive
- Low cost to maximise cost advantage over the proportion of the battery pack that it is effectively replacing
- 20 25 kW with lowest ESFC < 270 g/kWh
- Integrated engine, generator and power electronics cooling system
- Target vehicle European 'C' segment

Innovate UK

Prototype IPM machine with integrated inverter

- Interior permanent magnet (IPM) machine with integrated inverter developed by Ashwoods Automotive Ltd
- Low cost motor and inverter solution

DC Voltage	350~450 V	
Peak inverter DC current	100 A	
Operating speed	4000 -5000 rpm	
Cranking torque	80 Nm	
Generator/Inverter efficiency	>90%	
Continuous power	25 kW	

Interior Permanent Magnet Machine

- Magnets buried inside rotor, not surface mounted
- Combines features of permanent magnet and switched reluctance machines
- Reduced magnet size relative to PM
- Some of the performance comes from reluctance torque

Interior permanent magnet motor (IPM).

Baseline Engine Specification and Performance

- Engine Tata Motors 273 2-cylinder gasoline engine for Indian market application – Tata Nano
- High volume production, very low cost

Displaced volume	624 cc
Bore / Stroke	73.5 mm * 73.5 mm
Compression ratio	10.3:1
Maximum power	37 bhp @ 5500 RPM
Maximum torque	51 Nm @ 4000 RPM
Firing order	1 -2 (360° firing)
Number of valves	2 per cylinder, single fixed overhead camshaft
Fuel System	Sequential port fuel injection with closed loop A/F control

Opportunities for improvement in REEV application

Optimised Intake and Exhaust Manifolds

- Minimise package volume
- Improved VolEff between 2000 4500 rpm
- GT-power 1D Simulation by TMETC
- Optimized runner length considered too long from packaging perspective
- Resonator system selected for its compact size with only a small reduction in volumetric efficiency

APU cooling topologies (1)

- Separate coolant loops for engine and generator
- Duplication of pumps and heat exchangers.
- Permits optimum control of engine and generator coolant temperatures for maximum efficiency

- Temperature Measurement
- Pressure Measurement

APU cooling topologies (2)

PVR

- Combined coolant loop for engine and generator
- Simplified overall package
- Reduction in component cost/mass
- Compromise in engine and generator coolant temperature to achieve satisfactory performance

Pressure Measurement

Installation of Electric Water Pump (EWP)

- Disadvantages of Mechanical Pump
 - Inevitably oversized for normal operation
 - Production engine mechanical gear driven coolant pump
 - Continuous parasitic loss
- Advantages of an EWP
 - Improvement in fuel economy
 - Demand driven cooling independent of engine speed
 - Reduces impeller energy consumption
 - Flexibility in component packaging
 - Facilitates implementation of common coolant loop for

engine and liquid cooled generator and inverter

Oil circuit

- Engine oil gallery temperature controlled independently of coolant temperature*
- Provided greater degree of flexibility for optimisation study

APU test-bench facility

- APU test facility at University of Bath
- Dyno 1 for engine-only experiments
- Dyno 2 for motor-only experiments
- APU power output connected to a bi-directional DC power supply for battery emulation

Thermal survey of engine

 Engine BSFC increased by c. 5% under wide open throttle conditions when oil and coolant temperatures lowered from 90°C to 60°C

Target setting for APU performance

- Independent coolant loops
- Generator coolant inlet set point 35°C
- Engine coolant outlet set point 90°C
- Engine oil gallery set point 90°C
- Best ESFC of 260 g/kWh at 2500rpm

System optimisation considering inverter thermal state

- Oil and coolant set points 80°C
- Small increase in ESFC observed
- Best ESFC of 271 g/kWh at 2500 and 3000 rpm

In cycle speed control

- Use the generator as an actuator to counteract IC engine torque pulsations
- Limited authority due to practical constraints on generator sizing

Speed ripple improvements

- Comparison of measured and speed ripple with and without dynamic torque control
- Simulated ripple also shown

Speed control v motor losses

- Pareto front of losses against in cycle speed fluctuations
- Non linear copper losses cause elevated losses as greater variation in torque selected, even with unchanged mean power
- Improved cooling can help

Conclusions

- Most powertrains are likely to be hybridised by 2025?
- IC Engine has a changing role
 - Air quality a key driver
 - System level optimisation is essential (even more so than previously!)
 - Efficiency / cost trade off redefined

Two characteristic branches

- Increased complexity
 - Downsized
 - Fast air path
 - Flexible
 - Core mild hybrid prime mover

- Simple and efficient
 - High thermal efficiency
 - Limited dynamics
 - REEV or full hybrid

Contact

Chris Brace FIMechE Professor of Automotive Propulsion Deputy Director, Powertrain and Vehicle Research Centre University of Bath BA2 7AY

+44 1225 386731 <u>C.J.Brace@Bath.ac.uk</u>

