Modelling of Diesel fuel droplet heating and evaporation: Kinetic and MD analysis

Jianfei Xie

School of Computing, Engineering and Mathematics
Faculty of Science and Engineering

CAE WORKSHOP
05.06.2013

EPSRC
Engineering and Physical Sciences Research Council

University of Brighton
Outline

- Engineering background
- Modelling of evaporation and condensation processes
 - Molecular dynamics (MD) simulation
 - Kinetic modelling
- Application to heating and evaporation of Diesel fuel droplet
- Energy balance analysis for high temperature ambient gas
- Summary
Original ideas

Kinetic model: the Boltzmann equation is solved in the kinetic region

\[
\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{F}{m} \frac{\partial f}{\partial v} = \frac{\partial f}{\partial t_{\text{collision}}}
\]

Plus, the **kinetic boundary condition (KBC)**: evaporation coefficient and velocity distribution

\[
f^{\text{out}} = \alpha f^e + (1 - \alpha) f^r
\]

\[
\frac{\alpha}{2} \geq 1
\]

\[
f^{\text{out}} \approx f^M
\]

Discover the evaporation coefficient and velocity distribution using **MD** technique.

(Xie, Sazhin & Cao, 2012)
MD simulation: \textit{equilibrium simulation}

OPLS (Optimised Potential for Liquid simulation)

Constant - NVT ensemble

Number of molecules:
\[N = 720 \quad (N_x = 5, \quad N_y = 12 \quad \text{and} \quad N_z = 12) \]

Simulation box length:
\[L_x \times L_y \times L_z = 25.25 \text{ nm} \times 6.48 \text{ nm} \times 6.48 \text{ nm} \]

Liquid temperature: \[T_l = 500 \text{ K} \]

Periodic boundary condition (PBC) used in all directions

(Molecular structure of \textit{n}-dodecane (\textit{C}_{12}\textit{H}_{26})

(Xie, Sazhin & Cao, 2011; Cao, Xie & Sazhin, 2011)
velocity distribution and condensation coefficient

Velocity component normal to the vapour-liquid interface

Condensation coefficient versus liquid temperature

Velocity components parallel to the vapour-liquid interface

Distributions for all leaving molecules, evaporated and reflected

(Xie, Sazhin & Cao, 2012; Xie, Sazhin & Cao, 2011)
Revised kinetic boundary condition: $f^{out} = \alpha f^e + (1 - \alpha) f^r$

\[
\alpha = \alpha (T_L)
\]

\[
F^e_x = \frac{\alpha_e F^M_x}{\bar{\alpha}_e} = \frac{1 - \beta \exp(-E_x/2k_BT_L)}{1 - \beta/2} \left(\frac{m}{2\pi k_BT_L} \right)^{1/2} \exp \left(-\frac{E_x}{k_BT_L} \right)
\]

\[
F^r_x = \frac{1 - \alpha_e}{1 - \bar{\alpha}_e} F^M_x = \frac{1 - \alpha + \alpha \beta \exp(-E_x/2k_BT_L)}{1 - \alpha + \alpha \beta/2} \left(\frac{m}{2\pi k_BT_L} \right)^{1/2} \exp \left(-\frac{E_x}{k_BT_L} \right)
\]

(Xie, Sazhin & Cao, 2012)

Kinetic modelling

- Solve the **Boltzmann equation** in the kinetic region

\[
\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{F}{m} \frac{\partial f}{\partial v} = \frac{\partial f}{\partial t_{collision}}
\]

- The **inelastic collisions** is taken into account

- The **internal degrees of freedom** are considered
Inelastic collision model

Binary collision rules:

- The total number of degrees of freedom of each molecule $N_{total} = 3_{\text{translational}} + (N-3)_{\text{internal}}$

- One dimension in the N-dimensional space describes one of these degrees of freedom

- The energies of each molecule are redistributed between the degrees of freedom during the collisions and the total energy is conserved

(Shishkova, Sazhin & Xie, 2013)
Application: heating and evaporation of fuel droplet

Initial parameters:

\[P_0 = 30 \text{ bar} \]
\[T_{g0} = 1,500 \text{ K} \]
\[T_s = 300 \text{ K} \]
\[R_0 = 5 \mu m \]

(1) Hydrodynamic ITC model
(2) Kinetic ITC model without inelastic collision and with unity α
(3) Kinetic ITC model with inelastic collision and unity α
(4) Kinetic ITC model with inelastic collision and non-unity α

(Sazhin, Xie & Shishkova, 2013)
High ambient gas temperature case

In most cases, the mass rate of a stationary droplet is given by

$$\dot{m}_d = -4\pi R_d D_g \rho_{total} \ln (1 + B_M)$$

Limitations:
- Mixture density is independent on the distance from the droplet surface
- Surface temperature is low
- Partial pressure of vapour is much less than the that of air

Moreover, it is not the case when T_s approaches to or exceeds T_B.

The analysis of energy balance equation is an alternative:

$$4\pi R^2 k_g \frac{dT}{dR} = -\dot{m}_d c_{pv}(T - T_s) - \dot{m}_d L(T_s) + |\dot{q}_d|$$

And it can be rearranged to

$$4\pi k_g \frac{dT}{c_{pv}(T - T_s) + L(T_s) - (|\dot{q}_d|/\dot{m}_d)} = -\frac{\dot{m}_d dR}{R^2}.$$
A novel expression for mass rate:

\[
\dot{m}_d = -\frac{4\pi k_g R_d}{c_{pv}} \ln(1 + B_T)
\]

where, \(B_T = \frac{c_{pv}(T_g - T_s)}{L(T_s) - (|\dot{q}_d|/\dot{m}_d)}\) (Spalding heat transfer number)

and \(|\dot{q}_d| = 4\pi R_d^2 k_l \frac{\partial T}{\partial R}\bigg|_{R=R_d-0}\) (Heat rate at the droplet surface)

The solution to the heat conduction equation:

\[
T(R, t) = \frac{R_d}{R} \sum_{n=1}^{\infty} \left\{ q_n \exp \left[-\kappa_R \lambda_n^2 t\right] - \frac{\sin \lambda_n}{\| v_n \|^2} \frac{\mu_0(0)}{\lambda_n} \exp \left[-\kappa_R \lambda_n^2 t\right] - \sin \lambda_n \right\} \sin \left[\lambda_n \left(\frac{R}{R_d}\right)\right] + T_{\text{eff}}(t)
\]
The analytical solution to the heat rate:

\[
\frac{\partial T(R, t)}{\partial R} \bigg|_{R=R_d-0} = \frac{1}{R_d} \sum_{n=1}^{\infty} \left\{ q_n \exp \left[-\kappa_R \lambda_n^2 t \right] - \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \mu_0(0) \exp \left[-\kappa_R \lambda_n^2 t \right] - \right.

- \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \int_0^t \frac{d\mu_0(\tau)}{d\tau} \exp \left[-\kappa_R \lambda_n^2 (t - \tau) \right] d\tau \right\} \left[-\sin \lambda_n + \lambda_n \cos \lambda_n \right]

= \frac{1}{R_d} \sum_{n=1}^{\infty} \left\{ q_n \exp \left[-\kappa_R \lambda_n^2 t \right] - \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \mu_0(0) \exp \left[-\kappa_R \lambda_n^2 t \right] - \right.

- \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \int_0^t \frac{d\mu_0(\tau)}{d\tau} \exp \left[-\kappa_R \lambda_n^2 (t - \tau) \right] d\tau \right\} \left[-1 - h_0 \right] \sin \lambda_n.

\]

The analytical solution to the heat rate:

\[
|\dot{q}_d| = 4\pi R_d k_i \sum_{n=1}^{\infty} \left\{ q_n \exp \left[-\kappa_R \lambda_n^2 t \right] - \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \mu_0(0) \exp \left[-\kappa_R \lambda_n^2 t \right] - \right.

- \frac{\sin \lambda_n}{\| v_n \|^2 \lambda_n^2} \int_0^t \frac{d\mu_0(\tau)}{d\tau} \exp \left[-\kappa_R \lambda_n^2 (t - \tau) \right] d\tau \right\} \left[-1 - h_0 \right] \sin \lambda_n.

\]
Initial parameters:

\[P_0 = 30 \text{ bar} \]
\[T_{g0} = 1,500 \text{ K} \]
\[T_s = 300 \text{ K} \]
\[R_0 = 5 \mu\text{m} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Previous ETC</th>
<th>Present ETC</th>
<th>Previous-kinetic</th>
<th>Present-kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_s (K))</td>
<td>618.64</td>
<td>619.58</td>
<td>626.47</td>
<td>627.45</td>
</tr>
<tr>
<td>(t_e (ms))</td>
<td>0.2422</td>
<td>0.2488</td>
<td>0.2419</td>
<td>0.2481</td>
</tr>
</tbody>
</table>
Summary

- **Molecular dynamics simulations** of evaporation and condensation
 - evaporation/condensation coefficient
 - velocity distribution functions

- **Kinetic modelling** of evaporation in the kinetic region, taking into account inelastic collisions

- Application to the heating and evaporation of *Diesel fuel droplet* in engine-like conditions

- **Energy balance analysis** for high ambient gas temperature
References

