

Introduction to graphene

Graphene is a one-atom-thick planar sheet of sp²-bonded carbon atoms that are densely packed in a honeycomb crystal lattice

Molecular structure of graphene

High resolution transmission electron microscope images (TEM) of graphene

☆ University of Brighton

Thermal properties	
Material	Thermal conductivity W/(m·K)
Silica Aerogel	0.004 - 0.04
Air	0.025
Wood	0.04 - 0.4
Hollow Fill Fibre Insulation Polartherm	0.042
Alcohols and oils	0.1 - 0.21
Polypropylene	0.25 🔯
Mineral oil	0.138
Rubber	0.16
LPG	0.23 - 0.26
Cement, Portland	0.29
Epoxy (silica-filled)	0.30
Epoxy (unfilled)	0.59
Water (liquid)	0.6
Thermal grease	0.7 - 3
Thermal epoxy	1 - 7
Glass	1.1
Soil	1.5
Concrete, stone	1.7
Ice	2
Sandstone	2.4
Stainless steel	12.11 ~ 45.0
Lead	35.3
Aluminium	237 (pure) 120—180 (alloys)
Gold	318
Copper	401
Silver	429
Diamond	900 - 2320
Graphene	(4840±440) - (5300±480) University of Brighton

Single layer graphene – new production route

- Synthesis of PAN-Co-MMA by varying different ratio of monomers (5:5, 6:4, 7:3, 8:2, 9:1, 10:1, 12:1 etc.).
- Synthesis of PAN-Co-BA by varying different ratio of monomers (5:5, 6:4, 7:3, 8:2, 9:1, 10:1, 12:1 etc.).
- Thermal treatment of the copolymers in the N₂ atmosphere up to a temperature of 850°C.
- Grinding of the carbonized copolymers up to 4 hours.
- Process the powder of carbonized copolymers in sc-CO₂ medium.
- Ultrasonication of the powder in the NMP solvent.

✤ University of Brighton

19

Towards practical application

Indicates utility of combining novel materials with nanoparticle technologies to produce flexible nanocomposite devices for water treatment and other environmental applications

While many current embodiments of nanocomposite devices are in bead or fibrous format, use of flexible, low-cost "scaffolds" such as modified silica surfaces, polymers, activated carbons etc. allows a variety of device configurations to be developed, targeted at particular end-use applications and which can be "retrofitted" to existing treatment facilities

Acknowledgements:

Current and previous sources of funding:

CommercialiSE POC fund (SEEDA, ESF), Marie Curie FP7 Intra-European and International Incoming Fellowships programme, Leverhulme Trust, FP7 IAPP programme (Carbosorb, proj no. 230676, WasClean, proj no. 612250).

See also: http://www.bbc.co.uk/podcasts/series/discovery

