• Skip to content
  • Skip to footer
  • Accessibility options
University of Brighton
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • For
    staff
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study
    • Courses and subjects
    • Find a course
    • A-Z course list
    • Explore our subjects
    • Academic departments
    • Visiting the university
    • Explore online
    • Online events
    • Virtual tours
    • Chat to our students and staff
    • Open days
    • Applicant days
    • Order a prospectus
    • Ask a question
    • Studying here
    • Clearing 2021
    • Accommodation and locations
    • Applying
    • Undergraduate
    • Postgraduate
    • Transferring from another university
    • The Student Contract
    • International students
    • Fees and finance
    • Advice and help
    • Advice for students
    • Advice for parents and carers
    • Advice for schools and teachers
    • Managing your application
    • Undergraduate
    • Postgraduate
  • Research and enterprise
    • Research and enterprise
    • Research and enterprise organisation
    • Brighton Futures – our themes
    • Centres of Research and Enterprise Excellence (COREs)
    • Research and Enterprise Groups (REGs)
    • Our research database
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Research and enterprise news
    • Research and enterprise public events
    • Inaugural lectures
    • Research publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Staff
  • Accessibility
Search our site
Strand-banner-image
Centre for Stress and Age-Related Disease
  • What we do
  • Who we work with
  • Study or work with us
  • Who we are
  • What we do
    • What we do
    • Cell biology
    • Chemical biology
    • Our research and enterprise impact
    • Our research and enterprise projects
    • Translational sciences
  • Our research and enterprise projects
    • Our research and enterprise projects
    • A computational protocol to model organophosphonate CWAs and their simulants
    • A reactive oxygen and nitrogen species monitoring system to study their role in cancer
    • Amphiphilic-polymer-based-enhancers-for-local-drugs-delivery-to-the-inner-ear
    • Antibiotic efficacy in treating wound infection
    • Antioxidative enzymes
    • BK channels as Pharmacological targets for therapeutic intervention
    • Clinically reflective cellular model systems for Type 1 diabetes
    • Combating disorders of CNS myelination
    • Controlling infection in urinary catheters
    • C-Stress project
    • Development of a novel platform for local targeted treatment of cardiovascular disease
    • Development of an infection detecting wound dressing
    • Effects of age on signalling and function in the lower bowel
    • Effects of age on the central nervous system
    • Electrochemical sensor devices to understand ageing and disease mechanisms
    • Exploiting genomics to understand the role of vitamin D in human health and metabolism
    • Exploring the role of ADRB2 in triple negative breast cancer
    • Faecal sensor
    • Galactosemia – protein misfolding diseases which result in cellular stress
    • Hepatic disease
    • HIIT for Health
    • Identifying small molecules to remove or modify the phenotype of ageing cells
    • Increasing insulin production
    • Infection detecting wound dressing
    • Inflammation and Immunity
    • Modelling of cellular phospholipid homeostasis
    • Novel explanation for NSAID-induced cardiovascular side effects
    • organ of Corti
    • Pancreatic islet cell replacement and transplantation
    • PHOTORELEASE
    • Pillar(5)arenes
    • PPARβδ control of inflammation
    • Probing ion transport mechanisms with synthetic ion channels
    • Proteomic and genomic analysis of cellular stress responses
    • Quantifying-a-biophysical-model-of-lipid-protein
    • SensoPellet
    • Sex determination of human remains from peptides in tooth enamel
    • Stress hormones in BRCA mutation carriers
    • Switchable Molecules: A Radical Approach
    • Switchable surfactants in drug delivery
    • Synthesis and evaluation of Resveratrol derivatives
    • The effects of pre-natal alcohol on adolescent learning and memory
    • Translational regulation of stress responses and antibiotic production in Streptomyces bacteria
    • Type 1 Diabetes – cause and cure
    • Type 2 Diabetes
    • Understanding how social isolation increases morbidity and mortality
  • Combating disorders of CNS myelination

Combating disorders of CNS myelination

Over 100,000 people in the UK and approximately 2.5 million people worldwide are diagnosed with Multiple Sclerosis. Currently-approved drugs to treat MS are anti-inflammatory immunomodulators and only slow disease progression. There is no cure for MS. There is an urgent need to develop new drugs to combat the secondary progressive loss of neurons and eventual failure of remyelination that occurs as the disease progresses.

To achieve this, we tackle the challenge of enhancing central nervous system (CNS) regeneration using mixed primary neuron/glial cell assays and ex vivo brain slice culture models. This enables us to screen for compounds that promote developmental myelination and CNS regeneration following injury. By deciphering the mechanisms of action of novel myelin-repair and neuroprotective drugs, this facilitates the discovery of lead compounds which we will test in vivo and expedite their translation to clinical trial.

Project timeframes

This project began in 2015 and is ongoing.

Project aims

The aim of this project is to promote functional recovery of CNS neurons following acute traumatic and/or chronic inflammatory injury. Our goal is to identify new molecular targets and develop novel therapeutics that promote:

  • neuroprotection,
  • neuroregeneration and
  • remyelination of damaged CNS tissue

The primary focus of this project is to discover new regenerative treatments for neuroinflammatory disorders of the brain and spinal cord, such as Multiple Sclerosis (MS). Myelin-forming glial cells that wrap and insulate neurons become damaged in MS and this renders axons exposed and vulnerable to degeneration. This demyelination and eventual loss of axons is what leads to the debilitating symptoms of MS, including blurred vision, fatigue, limb weakness and problems with balance.

Neurons of the adult CNS generally display very limited regeneration after injury. In contrast, glial cells such as myelinating oligodendrocytes are replenished from a pool of adult neural stem cells, termed oligodendrocyte precursor cells (OPCs). Therefore, our CNS has the ability to repair itself and remyelinate damaged axons.

Our researchers study the intrinsic mechanisms underlying this CNS regeneration. By understanding how remyelination occurs naturally in the brain and spinal cord, we aim to develop methods to enhance the efficiency of endogenous adult stem/precursor cell types to repair lesioned tissue.

Like all regenerative processes, however, remyelination progressively declines as we age. The mechanisms underlying this deterioration in myelin repair capacity are not fully understood. Therefore, a goal of this project is to understand this natural age-related decline in remyelination in order to find ways to promote the regenerative capacity of adult stem/precursor cells in the CNS.

Project findings and impact

The overall goal of this project is to identify and develop novel adjunct therapies for MS that could potentially prolong and improve quality of life for patients.

Research team

Dr Graham Sheridan

Dr Mark Yeoman

Dr Marcus Allen

Dr Greg Scutt

Output

Velasco, M & Sheridan, GK (2015) GLIA 63:E455-E456

Velasco, M & Sheridan, GK (2015) GLIA 63:E458-E458

Partners

Kumlesh Dev (Drug Development – Trinity College Dublin)

María Velasco (Drug Development – Trinity College Dublin)

Back to top
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn icon

Contact us

University of Brighton
Mithras House
Lewes Road
Brighton
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links

  • Courses
  • Open days
  • Order a prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • Online shop
  • COVID-19

Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents